Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
CBE Life Sci Educ ; 22(2): ar16, 2023 06.
Article in English | MEDLINE | ID: mdl-36862803

ABSTRACT

Mastery of quantitative skills is increasingly critical for student success in life sciences, but few curricula adequately incorporate quantitative skills. Quantitative Biology at Community Colleges (QB@CC) is designed to address this need by building a grassroots consortium of community college faculty to 1) engage in interdisciplinary partnerships that increase participant confidence in life science, mathematics, and statistics domains; 2) generate and publish a collection of quantitative skills-focused open education resources (OER); and 3) disseminate these OER and pedagogical practices widely, in turn expanding the network. Currently in its third year, QB@CC has recruited 70 faculty into the network and created 20 modules. Modules can be accessed by interested biology and mathematics educators in high school, 2-year, and 4-year institutions. Here, we use survey responses, focus group interviews, and document analyses (principles-focused evaluation) to evaluate the progress in accomplishing these goals midway through the QB@CC program. The QB@CC network provides a model for developing and sustaining an interdisciplinary community that benefits participants and generates valuable resources for the broader community. Similar network-building programs may wish to adopt some of the effective aspects of the QB@CC network model to meet their objectives.


Subject(s)
Faculty , Students , Humans , Universities , Schools , Biology
2.
J Invertebr Pathol ; 96(1): 18-27, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17412359

ABSTRACT

Studies were conducted to examine the phenology, geographic distribution, and host specificity of the Solenopsis invicta virus-1 (SINV-1). Two genotypes examined, SINV-1 and -1A, exhibited similar seasonal prevalence patterns. Infection rates among colonies of S. invicta in Gainesville, Florida, were lowest from early winter (December) to early spring (April) increasing rapidly in late spring (May) and remaining high through August before declining again in the fall (September/October). Correlation analysis revealed a significant relationship between mean monthly temperature and SINV-1 (p<0.0005, r=0.82) and SINV-1A (p<0.0001, r=0.86) infection rates in S. invicta colonies. SINV-1 was widely distributed among S. invicta populations. The virus was detected in S. invicta from Argentina and from all U.S. states examined, with the exception of New Mexico. SINV-1 and -1A were also detected in other Solenopsis species. SINV-1 was detected in Solenopsis richteri and the S. invicta/richteri hybrid collected from northern Alabama and Solenopsis geminata from Florida. SINV-1A was detected in S. geminata and Solenopsis carolinensis in Florida and the S. invicta/richteri hybrid in Alabama. Of the 1989 arthropods collected from 6 pitfall trap experiments from Gainesville and Williston, Florida, none except S. invicta tested positive for SINV-1 or SINV-1A. SINV-1 did not appear to infect or replicate within Sf9 or Dm-2 cells in vitro. The number of SINV-1 genome copies did not significantly increase over the course of the experiment, nor were any cytopathic effects observed. Phylogenetic analyses of SINV-1/-1A nucleotide sequences indicated significant divergence between viruses collected from Argentina and the U.S.


Subject(s)
Ants/virology , Genome, Viral , Host-Parasite Interactions/physiology , Picornaviridae Infections/epidemiology , Picornaviridae/genetics , Amino Acid Sequence , Animals , Molecular Sequence Data , Phylogeny , Picornaviridae Infections/veterinary , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...