Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Breast Imaging ; 5(3): 267-276, 2023 May 22.
Article in English | MEDLINE | ID: mdl-38416889

ABSTRACT

OBJECTIVE: To evaluate the effectiveness of a new strategy for using artificial intelligence (AI) as supporting reader for the detection of breast cancer in mammography-based double reading screening practice. METHODS: Large-scale multi-site, multi-vendor data were used to retrospectively evaluate a new paradigm of AI-supported reading. Here, the AI served as the second reader only if it agrees with the recall/no-recall decision of the first human reader. Otherwise, a second human reader made an assessment followed by the standard clinical workflow. The data included 280 594 cases from 180 542 female participants screened for breast cancer at seven screening sites in two countries and using equipment from four hardware vendors. The statistical analysis included non-inferiority and superiority testing of cancer screening performance and evaluation of the reduction in workload, measured as arbitration rate and number of cases requiring second human reading. RESULTS: Artificial intelligence as a supporting reader was found to be superior or noninferior on all screening metrics compared with human double reading while reducing the number of cases requiring second human reading by up to 87% (245 395/280 594). Compared with AI as an independent reader, the number of cases referred to arbitration was reduced from 13% (35 199/280 594) to 2% (5056/280 594). CONCLUSION: The simulation indicates that the proposed workflow retains screening performance of human double reading while substantially reducing the workload. Further research should study the impact on the second human reader because they would only assess cases in which the AI prediction and first human reader disagree.


Subject(s)
Artificial Intelligence , Breast Neoplasms , Female , Humans , Workload , Retrospective Studies , Workflow , Breast Neoplasms/diagnosis , Mammography
2.
Radiol Artif Intell ; 3(2): e190181, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33937856

ABSTRACT

PURPOSE: To explore whether generative adversarial networks (GANs) can enable synthesis of realistic medical images that are indiscernible from real images, even by domain experts. MATERIALS AND METHODS: In this retrospective study, progressive growing GANs were used to synthesize mammograms at a resolution of 1280 × 1024 pixels by using images from 90 000 patients (average age, 56 years ± 9) collected between 2009 and 2019. To evaluate the results, a method to assess distributional alignment for ultra-high-dimensional pixel distributions was used, which was based on moment plots. This method was able to reveal potential sources of misalignment. A total of 117 volunteer participants (55 radiologists and 62 nonradiologists) took part in a study to assess the realism of synthetic images from GANs. RESULTS: A quantitative evaluation of distributional alignment shows 60%-78% mutual-information score between the real and synthetic image distributions, and 80%-91% overlap in their support, which are strong indications against mode collapse. It also reveals shape misalignment as the main difference between the two distributions. Obvious artifacts were found by an untrained observer in 13.6% and 6.4% of the synthetic mediolateral oblique and craniocaudal images, respectively. A reader study demonstrated that real and synthetic images are perceptually inseparable by the majority of participants, even by trained breast radiologists. Only one out of the 117 participants was able to reliably distinguish real from synthetic images, and this study discusses the cues they used to do so. CONCLUSION: On the basis of these findings, it appears possible to generate realistic synthetic full-field digital mammograms by using a progressive GAN architecture up to a resolution of 1280 × 1024 pixels.Supplemental material is available for this article.© RSNA, 2020.

SELECTION OF CITATIONS
SEARCH DETAIL
...