Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 631-632: 1328-1341, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29727957

ABSTRACT

Anthropogenic effects of urban density have altered natural ecosystems. Such changes include eutrophication of freshwater and adjoining coastal habitats, and increased levels of inorganic nutrients and pollutants into waterways. In Australia, these changes are intensified by large-scale ocean-atmospheric events, leading to considerable abiotic stress on the natural flora and fauna. Bacterial communities in marine sediments from Moreton Bay (South East Queensland, Australia) were examined in order to assess the impact of rainfall changes, chemical pollution, and subsequent abiotic stress on living organisms within a marine ecosystem. Sediments were collected during the wet and dry seasons and analyzed using bacterial metagenomics and community metabolomics techniques. Physicochemical data were also analyzed to account for biological variance that may be due to non-rainfall-based abiotic stresses. Wet-dry seasonality was the dominant control on bacterial community structure and metabolic function. Changes in the availability of nutrients, organic matter and light appeared to be the major seasonal stressors. In contrast, urban and industrial pollutants appeared to be minor stressors at the sites sampled. During the wet season, the bacterial community composition reflected organisms that utilize biogeochemical pathways with fast kinetics, such as aerobic metabolism, direct assimilation of inorganic compounds, and primary production. The transition to the dry season saw the bacterial community composition shift towards organisms that utilize more complex organic energy sources, such as carbohydrates and fatty acids, and anaerobic redox processes.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Bays , Ecosystem , Eutrophication , Geologic Sediments/microbiology , Queensland , Seasons , Water Pollutants, Chemical
2.
Metabolomics ; 14(12): 160, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30830469

ABSTRACT

INTRODUCTION: Fusarium oxysporum has a high affinity for lignin and cellulose-based substrates and is known to grow in a wide range of environments. It is these properties and its ability to produce mycotoxins that have contributed to its pathogenicity in cereal crops that can affect human and animal health when ingested. OBJECTIVES: Identify the mechanisms of mycotoxin production and map the functional output of F. oxysporum under varying growth conditions. METHODS: Liquid and gas-based chromatography coupled with mass spectrometry was used to identify and map the untargeted metabolic pathway of F. oxysporum grown using nitrogen limited and organic/inorganic nitrogen supplemented media. RESULTS: Over 1300 metabolites were identified, relating to 42 metabolic pathways. Of these, 520 metabolites merged at pyruvate (glycolysis), succinate (Krebs cycle) and aspartate-glutamate metabolic pathways. CoA depletion at the growth stage triggered the initiation of fatty acid and branched amino acid degradation. This in turn activated propionyl CoA carnitine acetyltransferase enzymes, resulting in nitrogen preservation (urea, putrescine and organic acids end-products). CoA then transferred into the TCA cycle via previously unreported ß-alanine and propionyl CoA metabolic pathways, the latter likely being a novel methylmalonyl-CoA mutase activity for F. oxysporum. CONCLUSIONS: The lower supplementation of inorganic nitrogen compounds (≤ 50 mM) and the elimination of nitrates/organic nitrogen sources resulted in TCA autophagy events that boosted mycotoxin-based metabolism and decreased overall F. oxysporum growth. Such knowledge of functional mycotoxin production can be used to supplement agricultural crops and reduce the risk of mycotoxin contamination in human and animal food supplies.


Subject(s)
Citric Acid Cycle , Fusarium/metabolism , Metabolome , Methylmalonyl-CoA Mutase/metabolism , Mycotoxins/metabolism , Nitrogen/deficiency , Fusarium/growth & development , Gas Chromatography-Mass Spectrometry , Metabolic Networks and Pathways , Mycotoxins/analysis
3.
Sci Total Environ ; 609: 842-853, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-28768216

ABSTRACT

The impact of anthropogenic factors arising from point and non-point pollution sources at a multi commodity marine port and its surrounding ecosystems were studied using sediment samples collected from a number of onshore (Gladstone Harbour and Facing Island) and offshore (Heron Island and Fitzroy Reefs) sites in Australia's Central Queensland. Sediment samples were analyzed for trace metals, organic carbon, polycyclic aromatic hydrocarbons (PAH), emerging chemicals of concern (ECC) and sterols. Similarly, the biological and biochemical interaction between the reef and its environment was analyzed by the multi-omic tools of next-generation sequencing characterization of the bacterial community and microbial community metabolic profiling. Overall, the trace elements were observed at the lower end of the Australian environmental guideline values at the offshore sites, while higher values were observed for the onshore locations Nickel and copper were observed above the high trigger value threshold at the onshore sites. The levels of PAH were below limits of detection across all sites. However, some of the ECC and sterols were observed at higher concentrations at both onshore and offshore locations, notably, the cholesterol family sterols and 17α-ethynylestradiol. Multi-omic analyses also indicated possible thermal and photo irradiation stressors on the bacterial communities at all the tested sites. The observed populations of γ-proteobacteria were found in combination with an increased pool of fatty acids that indicate fatty acid synthesis and utilisation of the intermediates of the shikimate pathways. This study demonstrates the value of applying a multi-omics approach for ecological assessments, in which a more detailed assessment of physical and chemical contaminants and their impact on the community bacterial biome is obtained.


Subject(s)
Bacteria/isolation & purification , Coral Reefs , Environmental Monitoring , Geologic Sediments/analysis , Water Microbiology , Water Pollutants, Chemical/analysis , Bacteria/classification , Carbon/analysis , Islands , Metals, Heavy/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Queensland , Sterols/analysis
4.
Parasitol Res ; 115(9): 3485-92, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27236650

ABSTRACT

Differentiation between viable and non-viable hookworm ova in environmental samples is necessary in order to implement strategies to mitigate re-infections in endemic regions. In this study, an untargeted metabolic profiling method was developed that utilised gas chromatography-mass spectrometry (GC-MS) in order to investigate hookworm ova viability. Ancylostoma caninum was used to investigate the metabolites within viable and non-viable ova. Univariate and multivariate statistical analyses of the data resulted in the identification of 53 significant metabolites across all hookworm ova samples. The major compounds observed in viable and non-viable hookworm ova were tetradecanoic acid, commonly known as myristic acid [fold change (FC) = 0.4], and dodecanoic acid, commonly known as lauric acid (FC = 0.388). Additionally, the viable ova had self-protecting metabolites such as prostaglandins, a typical feature absent in non-viable ova. The results of this study demonstrate that metabolic profiling using GC-MS methods can be used to determine the viability of canine hookworm ova. Further studies are needed to assess the applicability of metabolic profiling using GC-MS to detect viable hookworm ova in the mixed (viable and non-viable) populations from environmental samples and identify the metabolites specific to human hookworm species.


Subject(s)
Ancylostoma/metabolism , Ancylostomiasis/veterinary , Dog Diseases/parasitology , Metabolome/physiology , Ovum/physiology , Ancylostoma/physiology , Ancylostomiasis/parasitology , Ancylostomiasis/pathology , Animals , Dogs , Feces/parasitology , Gas Chromatography-Mass Spectrometry , Humans , Lauric Acids/metabolism , Myristic Acid/metabolism , Prostaglandins/metabolism
5.
Water Res ; 88: 346-357, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26512813

ABSTRACT

In this study, laboratory scale digesters were operated to simulate potential shocks to the Anaerobic Digestion (AD) process at a 350 ML/day wastewater treatment plant. The shocks included high (42 °C) and low (32 °C) temperature (either side of mesophilic 37 °C) and a 20% loading of fats, oil and grease (FOG; 20% w:v). These variables were explored at two sludge retention times (12 and 20 days) and two organic loading rates (2.0 and 2.5 kgTS/m(3)day OLR). Metagenomic and metabolomic approaches were then used to characterise the impact of operational shocks in regard to temperature and FOG addition, as determined through monitoring of biogas production, the microbial profile and their metabolism. Results showed that AD performance was not greatly affected by temperature shocks, with the biggest impact being a reduction in biogas production at 42 °C that persisted for 32 ± 1 days. The average biogas production across all digesters at the completion of the experiment was 264.1 ± 76.5 mL/day, with FOG addition observed to significantly promote biogas production (+87.8 mL/day). Metagenomic and metabolomic analyses of the digesters indicated that methanogens and methane oxidising bacteria (MOB) were low in relative abundance, and that the ratio of oxidising bacteria (methane, sulphide and sulphate) with respect to sulphate reducing bacteria (SRB) had a noticeable influence on biogas production. Furthermore, increased biogas production correlated with an increase in short chain fatty acids, a product of the addition of 20% FOG. This work demonstrates the application of metagenomics and metabolomics to characterise the microbiota and their metabolism in AD digesters, providing insight to the resilience of crucial microbial populations when exposed to operational shocks.


Subject(s)
Bioreactors/microbiology , Metabolomics/methods , Metagenomics/methods , Microbial Consortia/physiology , Waste Disposal, Fluid/methods , Anaerobiosis , Archaea/genetics , Archaea/metabolism , Bacteria/genetics , Bacteria/metabolism , Biofuels , High-Throughput Nucleotide Sequencing , Methane/metabolism , Sulfates/metabolism , Waste Disposal, Fluid/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...