Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res Commun ; 3(8): 1638-1647, 2023 08.
Article in English | MEDLINE | ID: mdl-37637935

ABSTRACT

Methionine aminopeptidase 2 (MetAP2) is essential to endothelial cell growth and proliferation during tumor angiogenesis. M8891 is a novel orally bioavailable, potent, selective, reversible MetAP2 inhibitor with antiangiogenic and antitumor activity in preclinical studies. The safety, tolerability, pharmacokinetics, and pharmacodynamics of M8891 monotherapy were assessed in a phase I, first-in-human, multicenter, open-label, single-arm, dose-escalation study (NCT03138538). Patients with advanced solid tumors received 7-80 mg M8891 once daily in 21-day cycles. The primary endpoint was dose-limiting toxicity (DLT) during cycle 1, with the aim to determine the maximum tolerated dose (MTD). Twenty-seven patients were enrolled across six dose levels. Two DLTs (platelet count decrease) were reported, one each at 60 and 80 mg/once daily M8891, resolving after treatment discontinuation. MTD was not determined. The most common treatment-emergent adverse event was platelet count decrease. M8891 plasma concentration showed dose-linear increase up to 35 mg and low-to-moderate variability; dose-dependent tumor accumulation of methionylated elongation factor 1α, a MetAP2 substrate, was observed, demonstrating MetAP2 inhibition. Pharmacokinetic/pharmacodynamic response data showed that preclinically defined target levels required for in vivo efficacy were achieved at safe, tolerated doses. Seven patients (25.9%) had stable disease for 42-123 days. We conclude that M8891 demonstrates a manageable safety profile, with dose-proportional exposure and low-to-moderate interpatient variability at target pharmacokinetic/pharmacodynamic levels at ≤35 mg M8891 once daily. On the basis of the data, 35 mg M8891 once daily is the recommended phase II dose for M8891 monotherapy. This study forms the basis for future development of M8891 in monotherapy and combination studies. Significance: M8891 represents a novel class of reversible MetAP2 inhibitors and has demonstrated preclinical antitumor activity. This dose-escalation study assessed M8891 treatment for patients with advanced solid tumors. M8891 demonstrated favorable pharmacokinetics, tumoral target engagement, and a manageable safety profile, and thus represents a novel antitumor strategy warranting further clinical studies.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Aminopeptidases , Metalloendopeptidases , Angiogenesis Inhibitors/adverse effects , Enzyme Inhibitors
2.
Acta Chim Slov ; 68(2): 395-403, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34738126

ABSTRACT

The synthesis of hydrazides formed by quinazolin-4(3H)-ylidenehydrazine and dicarboxylic acids, as well as their further modification are described in the present manuscript. It was shown that above-mentioned hydrazides may be obtained via acylation of initial quinazolin-4(3H)-ylidenehydrazine by corresponding acylhalides, cyclic anhydrides and imidazolides of dicarboxylic acids monoesters. Obtained hydrazides were converted into [1,2,4]triazolo[1,5-c]quinazolines that were used as initial compounds for chemical modification aimed to the introduction of amide fragment to the molecule. The IR, 1H NMR and chromato-mass spectral data of obtained compounds were studied and discussed. Obtained substances were studied for anti-inflammatory activity using carrageenan-induced paw inflammation model. Amides of ([1,2,4]triazolo[1,5-c]quinazoline-2-yl)alkyl carboxylic acids were detected as promising class of anti-inflammatory agents for further purposeful synthesis and profound study of anti-inflammatory activity.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Dicarboxylic Acids/therapeutic use , Edema/drug therapy , Hydrazines/therapeutic use , Inflammation/drug therapy , Quinazolines/therapeutic use , Administration, Oral , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Carrageenan , Dicarboxylic Acids/administration & dosage , Dicarboxylic Acids/chemistry , Disease Models, Animal , Edema/chemically induced , Hydrazines/administration & dosage , Hydrazines/chemistry , Inflammation/chemically induced , Quinazolines/administration & dosage , Quinazolines/chemistry , Rats , Rats, Wistar
3.
Eur J Med Chem ; 174: 292-308, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31051403

ABSTRACT

Different compounds have been investigated as potent drugs for trypanosomiasis treatment, but no new drug has been marketed in the past 3 decades. 4-Thiazolidinone/thiazole as privileged structures and thiosemicarbazides cyclic analogs are well known scaffolds in novel antitrypanosomal agent design. We present here the design and synthesis of new hybrid molecules bearing thiazolidinone/thiazole cores linked by the hydrazone group with various molecular fragments. Structure optimization led to compounds with phenyl-indole or phenyl-imidazo[2,1-b][1,3,4]thiadiazole moieties showing excellent antitrypanosomal activity towards Trypanosoma brucei brucei and Trypanosoma brucei gambiense. Biological study allowed identifying compounds with the submicromolar levels of IC50, good selectivity indexes and relatively low cytotoxicity upon human primary fibroblasts as well as low acute toxicity.


Subject(s)
Thiazolidines/pharmacology , Trypanocidal Agents/pharmacology , Animals , Cell Line , Humans , Inhibitory Concentration 50 , Male , Mice , Molecular Structure , Structure-Activity Relationship , Thiazolidines/chemical synthesis , Thiazolidines/chemistry , Thiazolidines/toxicity , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanocidal Agents/toxicity , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei gambiense/drug effects
4.
Curr Comput Aided Drug Des ; 12(1): 29-41, 2016.
Article in English | MEDLINE | ID: mdl-27012316

ABSTRACT

The increasing mortality due to antibacterial resistance necessitates the search for novel antimicrobial agents. Hence, series of 1-R-2-([1,2,4]triazolo[1,5-c]quinazoline-2-ylthio)etanon(ol)s were synthesized, evaluated by spectral data and studied against St. aureus, M. luteum, E. faecalis, E. aerogenes, P. aeruginosa, C. sakazakii, E. coli, K. pneumonia, hospital Streptococcus spp., C. albicans and A. niger in 100, 500 µg/mL and 100 µg/disk. Substances exhibited moderate toxicity in 0.025, 0.1 and 0.25 mg/mL in bioluminescence inhibition tests of Photobacterium leiognathi. SAR exposed that introduction of 2,4-(Cl)2C6H3-, 2,5-(OMe)2C6H3-, 4-Me-2-iPr-C6H3O- and 3-iPr-C6H4O- fragments and reduction of the pyrimidine ring of R-([1,2,4]triazolo[1,5-c]quinazolin-2-ylthio)alcohols were the best modifications to promote antimicrobial activity. Molecular docking showed their good affinity into the active sites of EcPanK-AMPPNP and hDHFR. Hence, reported results will be used for subsequent QSAR model creation and purposeful antimicrobial modification of the strongest compounds.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Quinazolines/chemistry , Quinazolines/pharmacology , Bacteria/drug effects , Bacterial Infections/drug therapy , Fungi/drug effects , Humans , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycoses/drug therapy , Tetrahydrofolate Dehydrogenase/metabolism , Triazoles/chemistry , Triazoles/pharmacology
5.
Article in English | MEDLINE | ID: mdl-26813534

ABSTRACT

The increasing mortality due to antibacterial resistance necessitates the search for novel antimicrobial agents. Hence, series of 1-R-2-([1,2,4]triazolo[1,5-c]quinazoline-2-ylthio)etanon(ol)s were synthesized, evaluated by spectral data and studied against St. aureus, M. luteum, E. faecalis, E. aerogenes, P. aeruginosa, C. sakazakii, E.coli, K. pneumonia, hospital Streptococcus spp., C. albicans and A. niger in 100, 500 µg/mL and 100 µg/disk. Substances exhibited moderate toxicity in 0.025, 0.1 and 0.25 mg/mL in bioluminescence inhibition tests of Photobacterium leiognathi. SAR exposed that introduction of 2,4-(Cl)2C6H3-, 2,5-(OMe)2C6H3-, 4-Me-2-iPr-C6H3O- and 3-iPr-C6H4O- fragments and reduction of the pyrimidine ring of R-([1,2,4]triazolo[1,5-c]quinazolin-2-ylthio)alcohols were the best modifications to promote antimicrobial activity. Molecular docking showed their good affinity into the active sites of EcPanK-AMPPNP and hDHFR. Hence, reported results will be used for subsequent QSAR model creation and purposeful antimicrobial modification of the strongest compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...