Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38794500

ABSTRACT

Electrospun ultrathin fibers based on binary compositions of polylactide (PLA) and poly(ε-caprolactone) (PCL) with the various content from the polymer ratio from 0/100 to 100/0 have been explored. Combining thermal (DSC) and spectropy (ESR) techniques, the effect of biopolymer content on the characteristics of the crystal structure of PLA and PCL and the rotative diffusion of the stable TEMPO radical in the intercrystallite areas of PLA/PCL compositions was shown. It was revealed that after PLA and PCL blending, significant changes in the degree of crystallinity of PLA, PCL segment mobility, sorption of the Tempo probe, as well as its activation energy of rotation in the intercrystalline areas of PLA/PCL fibers, were evaluated. The characteristic region of biopolymers' composition from 50/50 to 30/70% PLA/PCL blend ratio was found, where the inversion transition of PLA from dispersive medium to dispersive phase where an inversion transition is assumed when the continuous medium of the PLA transforms into a discrete phase. The performed studies made it possible, firstly, to carry out a detailed study of the effect of the system component ratio on the structural and dynamic characteristics of the PLA/PCL film material at the molecular level.

2.
Polymers (Basel) ; 15(20)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37896415

ABSTRACT

In order to create new biodegradable nanocomposites for biomedicine, packaging, and environmentally effective adsorbents, ultra-thin composite fibers consisting of poly(3-hydroxybutyrate) (PHB) and graphene oxide (GO) were obtained by electrospinning. Comprehensive studies of ultrathin fibers combining thermal characteristics, dynamic electron paramagnetic resonance (ESR) probe measurements, and scanning electron microscopy (SEM) were carried out. It is shown that at the addition of 0.05, 0.1, 0.3, and 1% OG, the morphology and geometry of the fibers and their thermal and dynamic characteristics depend on the composite content. The features of the crystalline and amorphous structure of the PHB fibers were investigated by the ESR and DSC methods. For all compositions of PHB/GO, a nonlinear dependence of the correlation time of molecular mobility TEMPO probe (τ) and enthalpy of biopolyether melting (ΔH) is observed. The influence of external factors on the structural-dynamic properties of the composite fiber, such as hydrothermal exposure of samples in aqueous medium at 70 °C and ozonolysis, leads to extreme dependencies of τ and ΔH, which reflect two processes affecting the structure in opposite ways. The plasticizing effect of water leads to thermal destruction of the orientation of the pass-through chains in the amorphous regions of PHB and a subsequent decrease in the crystalline phase, and the aggregation of GO nanoplates into associates, reducing the number of GO-macromolecule contacts, thus increasing segmental mobility, as confirmed by decreasing τ values. The obtained PHB/GO fibrillar composites should find application in the future for the creation of new therapeutic and packaging systems with improved biocompatibility and high-barrier properties.

4.
Polymers (Basel) ; 14(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36236003

ABSTRACT

Comprehensive studies combining X-ray diffraction analysis, thermophysical, dynamic measurements by probe method and scanning electron microscopy have been carried out. The peculiarity of the crystalline and amorphous structure of ultra-thin fibers based on poly(3-hydroxybutyrate) (PHB) containing minor concentrations (0-5%) of a gene and a tetraphenylporphyrin (TFP) complex with iron (in the form of FeCl) are considered. When these complexes are added to the PHB fibers, the morphology of the fibers change: a sharp change in the crystallinity and molecular mobility in the amorphous regions of PHB is observed. When adding a gel to the fibers of PHB, a significant decrease in the degree of crystallinity, melting enthalpy, and correlation time can be observed. The reverse pattern is observed in a system with the addition of FeCl-TFP-there is a significant increase in the degree of crystallinity, melting enthalpy and correlation time. Exposure of PHB fibers with gemin in an aqueous medium at 70 °C leads to a decrease in the enthalpy of melting in modified fibers-to an increase in this parameter. The molecular mobility of chains in amorphous regions of PHB/gemin fibers increases at the same time, a nonlinear dependence of changes in molecular dynamics is observed in PHB/FeCl-TFP fibers. Ozonolysis has a complex effect on the amorphous structure of the studied systems. The obtained fibrous materials have bactericidal properties and should be used in the creation of new therapeutic systems of antibacterial and antitumor action.

5.
Polymers (Basel) ; 14(5)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35267881

ABSTRACT

In this work, PLA/NR electrospun fibers were used as substrates for growing basil. Thermal characteristics of initial samples and after 60 and 220 days of degradation were determined using differential scanning calorimetry. In the process of disintegration, the melting and glass transition temperatures in PLA/NR composites decreased, and in PLA fibers these values increased slightly. TGA analysis in an argon environment confirmed the effect of NR on the thermal degradation of PLA/NR fibers. After exposure to the soil for 220 days, the beginning of degradation shifted to the low-temperature region. The dynamic characteristics of the fibers were determined by the EPR method. A decrease in the correlation time of the probe-radical in comparison with the initial samples was shown. FTIR spectroscopy was used to analyze the chemical structure before and after degradation in soil. In PLA/NR fibrous substrates, there was a decrease in the intensity of the bands corresponding to the PLA matrix and the appearance of N-H C-N groups due to biodegradation by soil microorganisms.

6.
J Funct Biomater ; 13(1)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35323223

ABSTRACT

The comparison of the effect of porphyrins of natural and synthetic origin containing the same metal atom on the structure and properties of the semi-crystalline polymer matrix is of current concern. A large number of modifying additives and biodegradable polymers for biomedical purposes, composed of poly(-3-hydroxybutyrate)-porphyrin, are of particular interest because of the combination of their unique properties. The objective of this work are electrospun fibrous material based on poly(-3-hydroxybutyrate) (PHB), hemin (Hmi), and tetraphenylporphyrin with iron (Fe(TPP)Cl). The structure of these new materials was investigated by methods such as optical and scanning electron microscopy, X-ray diffraction analysis, Electron paramagnetic resonance method, and Differential scanning calorimetry. The properties of the electrospun materials were analyzed by mechanical and biological tests, and the wetting contact angle was measured. In this work, it was found that even small concentrations of porphyrin can increase the antimicrobial properties by 12 times, improve the physical and mechanical properties by at least 3.5 times, and vary hydrophobicity by at least 5%. At the same time, additives similar in the structure had an oppositely directed effect on the supramolecular structure, the composition of the crystalline, and the amorphous phases. The article considers assumptions about the nature of such differences due to the influence of Hmi and Fe(TPP)Cl) on the macromolecular and fibrous structure of PHB.

7.
Polymers (Basel) ; 14(3)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35160599

ABSTRACT

The effect of small additions (1-5 wt.%) of tetraphenylporphyrin (TPP) and its complexes with Fe (III) and Sn (IV) on the structure and properties of ultrathin fibers based on poly(3-hydroxybutyrate) (PHB) has been studied. A comprehensive study of biopolymer compositions included X-ray diffraction (XRD), differential scanning calorimetry (DSC), spin probe electron paramagnetic resonance method (EPR), and scanning electron microscopy (SEM). It was demonstrated that the addition of these dopants to the PHB fibers modifies their morphology, crystallinity and segmental dynamics in the amorphous regions. The annealing at 140 °C affects crystallinity and molecular mobility in the amorphous regions of the fibers, however the observed changes exhibit multidirectional behavior, depending on the type of porphyrin and its concentration in the fiber. Fibers exposure to an aqueous medium at 70 °C causes a nonlinear change in the enthalpy of melting and challenging nature of a change of the molecular dynamics.

8.
Polymers (Basel) ; 13(14)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34300990

ABSTRACT

Non-woven polylactide-natural rubber fiber materials with a rubber content of 5, 10 and 15 wt.% were obtained by electrospinning. The thermal, dynamic, and mechanical properties of the fibers were determined. It was shown that the average fiber diameter increased with adding of the NR content, while the linear and surface densities changed slightly. Using the differential scanning calorimetry, the thermal characteristics were obtained. It was found that the glass transition temperature of polylactide increased by 2-5 °C, and the melting temperature increased by 2-4 °C in the presence of natural rubber in the samples. By the method of electronic paramagnetic resonance at T = 50 and 70 °C it was determined that the mobility of the amorphous phase in PLA/NR fibers increased with the addition of NR. The adding of NR at a content of 15 wt.% increased the value of elongation at break by 3.5 times compared to pure PLA.

9.
Polymers (Basel) ; 13(6)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803794

ABSTRACT

Ultrathin electrospun fibers of pristine biopolyesters, poly(3-hydroxybutyrate) (PHB) and polylactic acid (PLA), as well as their blends, have been obtained and then explored after exposure to hydrolytic (phosphate buffer) and oxidative (ozone) media. All the fibers were obtained from a co-solvent, chloroform, by solution-mode electrospinning. The structure, morphology, and segmental dynamic behavior of the fibers have been determined by optical microscopy, SEM, ESR, and others. The isotherms of water absorption have been obtained and the deviation from linearity (the Henry low) was analyzed by the simplified model. For PHB-PLA fibers, the loss weight increments as the reaction on hydrolysis are symbate to water absorption capacity. It was shown that the ozonolysis of blend fibrils has a two-stage character which is typical for O3 consumption, namely, the pendant group's oxidation and the autodegradation of polymer molecules with chain rupturing. The first stage of ozonolysis has a quasi-zero-order reaction. A subsequent second reaction stage comprising the back-bone destruction has a reaction order that differs from the zero order. The fibrous blend PLA/PHB ratio affects the rate of hydrolysis and ozonolysis so that the fibers with prevalent content of PLA display poor resistance to degradation in aqueous and gaseous media.

10.
J Biol Chem ; 295(22): 7774-7788, 2020 05 29.
Article in English | MEDLINE | ID: mdl-32317280

ABSTRACT

Glioblastoma multiforme (GBM) is a malignant brain tumor with a poor prognosis resulting from tumor resistance to anticancer therapy and a high recurrence rate. Compelling evidence suggests that this is driven by subpopulations of cancer stem cells (CSCs) with tumor-initiating potential. ABC subfamily B member 5 (ABCB5) has been identified as a molecular marker for distinct subsets of chemoresistant tumor-initiating cell populations in diverse human malignancies. In the current study, we examined the potential role of ABCB5 in growth and chemoresistance of GBM. We found that ABCB5 is expressed in primary GBM tumors, in which its expression was significantly correlated with the CSC marker protein CD133 and with overall poor survival. Moreover, ABCB5 was also expressed by CD133-positive CSCs in the established human U-87 MG, LN-18, and LN-229 GBM cell lines. Antibody- or shRNA-mediated functional ABCB5 blockade inhibited proliferation and survival of GBM cells and sensitized them to temozolomide (TMZ)-induced apoptosis in vitro Likewise, in in vivo human GBM xenograft experiments with immunodeficient mice, mAb treatment inhibited growth of mutant TP53, WT PTEN LN-229 tumors, and sensitized LN-229 tumors to TMZ therapy. Mechanistically, we demonstrate that ABCB5 blockade inhibits TMZ-induced G2/M arrest and augments TMZ-mediated cell death. Our results identify ABCB5 as a GBM chemoresistance marker and point to the potential utility of targeting ABCB5 to improve current GBM therapies.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , Antibodies, Neoplasm/pharmacology , Apoptosis/drug effects , Brain Neoplasms , Drug Resistance, Neoplasm/drug effects , G2 Phase Cell Cycle Checkpoints/drug effects , Glioblastoma , M Phase Cell Cycle Checkpoints/drug effects , Neoplasm Proteins , RNA, Small Interfering , Temozolomide/pharmacology , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Female , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Mice , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Xenograft Model Antitumor Assays
11.
Polymers (Basel) ; 12(3)2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32178319

ABSTRACT

Actually, in order to replace traditional fossil-based polymers, many efforts are devoted to the design and development of new and high-performance bioplastics materials. Poly(hydroxy alkanoates) (PHAS) as well as polylactides are the main candidates as naturally derived polymers. The intention of the present study is to manufacture fully bio-based blends based on two polyesters: poly (3-hydroxybutyrate) (PHB) and polylactic acid (PLA) as real competitors that could be used to replace petrol polymers in packaging industry. Blends in the shape of films have been prepared by chloroform solvent cast solution methodology, at different PHB/PLA ratios: 1/0, 1/9, 3/7, 5/5, 0/1. A series of dynamic explorations have been performed in order to characterize them from a different point of view. Gas permeability to N2, O2, and CO2 gases and probe (TEMPO) electron spin resonance (ESR) analyses were performed. Blend surface morphology has been evaluated by Scanning Electron Microscopy (SEM) while their thermal behavior was analyzed by Differential Scanning Calorimetry (DSC) technique. Special attention was devoted to color and transparency estimation. Both probe rotation mobility and N2, O2, and CO2 permeation have monotonically decreased during the transition from PLA to PHB, for all contents of bio-blends, namely because of transferring from PLA with lower crystallinity to PHB with a higher one. Consequently, the role of the crystallinity was elucidated. The temperature dependences for CO2 permeability and diffusivity as well as for probe correlation time allowed the authors to evaluate the activation energy of both processes. The values of gas transport energy activation and TEMPO rotation mobility are substantially close to each other, which should testify that polymer segmental mobility determines the gas permeability modality.

12.
Brain Behav Immun ; 62: 137-150, 2017 May.
Article in English | MEDLINE | ID: mdl-28109896

ABSTRACT

Both sleep loss and pathogens can enhance brain inflammation, sleep, and sleep intensity as indicated by electroencephalogram delta (δ) power. The pro-inflammatory cytokine interleukin-1 beta (IL-1ß) is increased in the cortex after sleep deprivation (SD) and in response to the Gram-negative bacterial cell-wall component lipopolysaccharide (LPS), although the exact mechanisms governing these effects are unknown. The nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflammasome protein complex forms in response to changes in the local environment and, in turn, activates caspase-1 to convert IL-1ß into its active form. SD enhances the cortical expression of the somnogenic cytokine IL-1ß, although the underlying mechanism is, as yet, unidentified. Using NLRP3-gene knockout (KO) mice, we provide evidence that NLRP3 inflammasome activation is a crucial mechanism for the downstream pathway leading to increased IL-1ß-enhanced sleep. NLRP3 KO mice exhibited reduced non-rapid eye movement (NREM) sleep during the light period. We also found that sleep amount and intensity (δ activity) were drastically attenuated in NLRP3 KO mice following SD (homeostatic sleep response), as well as after LPS administration, although they were enhanced by central administration of IL-1ß. NLRP3, ASC, and IL1ß mRNA, IL-1ß protein, and caspase-1 activity were greater in the somatosensory cortex at the end of the wake-active period when sleep propensity was high and after SD in wild-type but not NLRP3 KO mice. Thus, our novel and converging findings suggest that the activation of the NLRP3 inflammasome can modulate sleep induced by both increased wakefulness and a bacterial component in the brain.


Subject(s)
Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sleep Deprivation/metabolism , Sleep/physiology , Animals , Inflammasomes/genetics , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Polysomnography , Signal Transduction/physiology , Sleep Deprivation/genetics , Wakefulness/physiology
13.
Neurosci Lett ; 580: 27-31, 2014 Sep 19.
Article in English | MEDLINE | ID: mdl-25093703

ABSTRACT

Acute sleep loss increases pro-inflammatory and synaptic plasticity-related molecules in the brain, including interleukin-1 beta (IL-1ß), tumor necrosis factor-alpha (TNF-α), and brain-derived neurotrophic factor (BDNF). These molecules enhance non-rapid eye movement sleep slow wave activity (SWA), also known as electroencephalogram delta power, and modulate neurocognitive performance. Evidence suggests that chronic sleep restriction (CSR), a condition prevalent in today's society, does not elicit the enhanced SWA that is seen after acute sleep loss, although it cumulatively impairs neurocognitive functioning. Rats were continuously sleep deprived for 18h per day and allowed 6h of ad libitum sleep opportunity for 1 (SR1), 3 (SR3), or 5 (SR5) successive days (i.e., CSR). IL-1ß, TNF-α, and BDNF mRNA levels were determined in the somatosensory cortex, frontal cortex, hippocampus, and basal forebrain. Largely, brain IL-1ß and TNF-α expression were significantly enhanced throughout CSR. In contrast, BDNF mRNA levels were similar to baseline values in the cortex after 1 day of SR and significantly lower than baseline values in the hippocampus after 5 days of SR. In the basal forebrain, BDNF expression remained elevated throughout the 5 days of CSR, although IL-1ß expression was significantly reduced. The chronic elevations of IL-1ß and TNF-α and inhibition of BDNF might contribute to the reported lack of SWA responses reported after CSR. Further, the CSR-induced enhancements in brain inflammatory molecules and attenuations in hippocampal BDNF might contribute to neurocognitive and vigilance detriments that occur from CSR.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Brain/metabolism , Interleukin-1beta/metabolism , Sleep Deprivation/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Brain-Derived Neurotrophic Factor/genetics , Cerebral Cortex/metabolism , Interleukin-1beta/genetics , Male , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/genetics
14.
J Insect Physiol ; 59(7): 697-704, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23665334

ABSTRACT

To dissect the molecular oscillatory mechanism of the circadian clock in the cricket Gryllus bimaculatus, we have cloned a cDNA of the clock gene cycle (Gb'cyc) and analyzed its structure and function. Gb'cyc contains four functional domains, i.e. bHLH, PAS-A, PAS-B and BCTR domains, and is expressed rhythmically in light dark cycles, peaking at mid night. The RNA interference (RNAi) of Clock (Gb'Clk) and period (Gb'per) reduced the Gb'cyc mRNA levels and abolished the rhythmic expression, suggesting that the rhythmic expression of Gb'cyc is regulated by a mechanism including Gb'Clk and Gb'per. These features are more similar to those of mammalian orthologue of cyc (Bmal1) than those of Drosophila cyc. A single treatment with double-stranded RNA (dsRNA) of Gb'cyc effectively knocked down the Gb'cyc mRNA level and abolished its rhythmic expression. The cyc RNAi failed to disrupt the locomotor rhythm, but lengthened its free-running period in constant darkness (DD). It is thus likely that Gb'cyc is involved in the circadian clock machinery of the cricket. The cyc RNAi crickets showed a rhythmic expression of Gb'per and timeless (Gb'tim) in the optic lobe in DD, explaining the persistence of the locomotor rhythm. Surprisingly, cyc RNAi revealed a rhythmic expression of Gb'Clk in DD which is otherwise rather constitutively expressed in the optic lobe. These facts suggest that the cricket might have a unique clock oscillatory mechanism in which both Gb'cyc and Gb'Clk are rhythmically controlled and that under abundant expression of Gb'cyc the rhythmic expression of Gb'Clk may be concealed.


Subject(s)
CLOCK Proteins/metabolism , Gryllidae/physiology , Insect Proteins/metabolism , Animals , CLOCK Proteins/genetics , Circadian Clocks , Gryllidae/classification , Gryllidae/genetics , Gryllidae/radiation effects , Insect Proteins/genetics , Photoperiod , Phylogeny , RNA Interference
15.
J Neurosci Methods ; 216(2): 79-86, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23563323

ABSTRACT

Mice are by far the most widely used species for scientific research and have been used in many studies involving biopotentials, such as the electroencephalogram (EEG) and electromyogram (EMG) signals monitored for sleep analysis. Unfortunately, current methods for the analysis of these signals involve either tethered systems that are restrictive and heavy for the animal or wireless systems that use transponders that are large relative to the animal and require invasive surgery for implantation; as a result, natural behavior/activity is altered. Here, we propose a novel and inexpensive system for measuring electroencephalographic signals and other biopotentials in mice that allows for natural movement. We also evaluate the new system for the analysis of sleep architecture and EEG power during both spontaneous sleep and the sleep that follows sleep deprivation in mice. Using our new system, vigilance states including non-rapid eye movement sleep (NREMS), rapid eye movement sleep (REMS), and wakefulness, as well as EEG power and NREMS EEG delta power in the 0.5-4 Hz range (an indicator of sleep intensity) showed the diurnal rhythms typically found in mice. These values were also similar to values obtained in mice using telemetry transponders. Mice that used the new system also demonstrated enhanced NREMS EEG delta power responses that are typical following sleep deprivation and few signal artifacts. Moreover, similar movement activity counts were found when using the new system compared to a wireless system. This novel system for measuring biopotentials can be used for polysomnography, infusion, microdialysis, and optogenetic studies, reduces artifacts, and allows for a more natural moving environment and a more accurate investigation of biological systems and pharmaceutical development.


Subject(s)
Movement/physiology , Polysomnography/instrumentation , Polysomnography/methods , Sleep Stages/physiology , Telemetry/instrumentation , Telemetry/methods , Animals , Brain/physiology , Electroencephalography , Mice
16.
J Biol Rhythms ; 26(1): 3-13, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21252361

ABSTRACT

Pigment-dispersing factor (PDF) is a neuropeptide widely distributed in insect brains and plays important roles in the circadian system. In this study, we used RNA interference to study the role of the pigment-dispersing factor (pdf) gene in regulating circadian locomotor rhythms in the cricket, Gryllus bimaculatus. Injections of pdf double-stranded RNA (dspdf) effectively knocked down the pdf mRNA and PDF peptide levels. The treated crickets maintained the rhythm both under light-dark cycles (LD) and constant darkness (DD). However, they showed rhythms with reduced nocturnal activity with prominent peaks at lights-on and lights-off. Entrainability of dspdf-injected crickets was higher than control crickets as they required fewer cycles to resynchronize to the LD cycles shifted by 6 h. The free-running periods of the dspdf-injected crickets were shorter than those of control crickets in DD. These results suggest that PDF is not essential for the rhythm generation but involved in control of the nocturnality, photic entrainment, and fine tuning of the free-running period of the circadian clock.


Subject(s)
Drosophila Proteins/metabolism , Insect Proteins/metabolism , Neuropeptides/chemistry , Receptors, G-Protein-Coupled/metabolism , Animals , Behavior, Animal , Biological Clocks , Circadian Rhythm , Gryllidae , Immunohistochemistry , Light , Male , Movement , Neuropeptides/metabolism , RNA Interference , RNA, Double-Stranded/metabolism , RNA, Messenger/metabolism , Time Factors
17.
J Biol Rhythms ; 23(4): 308-18, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18663238

ABSTRACT

Periodic expression of so-called clock genes is an essential part of the circadian clock. In Drosophila melanogaster the cyclic expression of per and tim through an autoregulatory feedback loop is believed to play a central role in circadian rhythm generation. However, it is still elusive whether this hypothesis is applicable to other insect species. Here it is shown that per gene plays a key role in the rhythm generation in the cricket Gryllus bimaculatus. Measurement of per mRNA levels in the optic lobe revealed the rhythmic expression of per in light cycles with a peak in the late day to early night, persisting in constant darkness. A single injection of per double-stranded RNA (dsRNA) into the abdomen of the final instar nymphs effectively knocked down the mRNA levels as adult to about 50% of control animals. Most of the per dsRNA-injected crickets completely lost the circadian locomotor activity rhythm in constant darkness up to 50 days after the injection, whereas those injected with DsRed2 dsRNA as a negative control clearly maintained it. The electrical activity of optic lobe efferents also became arrhythmic in the per dsRNA-injected crickets. These results not only suggest that per plays an important role in the circadian rhythm generation also in the cricket but also show that RNA interference is a powerful tool to dissect the molecular machinery of the cricket circadian clock.


Subject(s)
Biological Clocks/genetics , Circadian Rhythm/genetics , Gryllidae/metabolism , RNA Interference , Trans-Activators/metabolism , Animals , CLOCK Proteins , Genes, Insect , Gryllidae/genetics , RNA, Messenger/analysis , Trans-Activators/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...