Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Opt Lett ; 49(4): 1049-1052, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38359250

ABSTRACT

Ultrashort pulses at infrared wavelengths are advantageous when studying light-matter interaction. For the spectral region around 2 µm, multi-stage parametric amplification is the most common method to reach higher pulse energies. Yet it has been a key challenge for such systems to deliver waveform-stable pulses without active stabilization and synchronization systems. Here, we present a different approach for the generation of infrared pulses centered at 1.8 µm with watt-level average power utilizing only a single nonlinear crystal. Our laser system relies on a well-established Yb:YAG thin-disk technology at 1.03 µm wavelength combined with a hybrid two-stage broadening scheme. We show the high-power downconversion process via intra-pulse difference frequency generation, which leads to excellent passive stability of the carrier envelope phase below 20 mrad-comparable to modern oscillators. It also provides simple control over the central wavelength within a broad spectral range. The developed infrared source is employed to generate a multi-octave continuum from 500 nm to 2.5 µm opening the path toward sub-cycle pulse synthesis with extreme waveform stability.

2.
Opt Express ; 31(15): 24862-24874, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37475303

ABSTRACT

Parametric downconversion driven by modern, high-power sources of 10-fs-scale near-infrared pulses, in particular intrapulse difference-frequency generation (IPDFG), affords combinations of properties desirable for molecular vibrational spectroscopy in the mid-infrared range: broad spectral coverage, high brilliance, and spatial and temporal coherence. Yet, unifying these in a robust and compact radiation source has remained a key challenge. Here, we address this need by employing IPDFG in a multi-crystal in-line geometry, driven by the 100-W-level, 10.6-fs pulses of a 10.6-MHz-repetition-rate, nonlinearly post-compressed Yb:YAG thin-disk oscillator. Polarization tailoring of the driving pulses using a bichromatic waveplate is followed by a sequence of two crystals, LiIO3 and LiGaS2, resulting in the simultaneous coverage of the 800-cm-1-to-3000-cm-1 spectral range (at -30-dB intensity) with 130 mW of average power. We demonstrate that optical-phase coherence is maintained in this in-line geometry, in theory and experiment, the latter employing ultra-broadband electro-optic sampling. These results pave the way toward coherent spectroscopy schemes like field-resolved and frequency-comb spectroscopy, as well as nonlinear, ultrafast spectroscopy and optical-waveform synthesis across the entire infrared molecular fingerprint region.

3.
Nature ; 618(7964): 276-280, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225991

ABSTRACT

Photoinjection of charge carriers profoundly changes the properties of a solid. This manipulation enables ultrafast measurements, such as electric-field sampling1,2, advanced recently to petahertz frequencies3-7, and the real-time study of many-body physics8-13. Nonlinear photoexcitation by a few-cycle laser pulse can be confined to its strongest half-cycle14-16. Describing the associated subcycle optical response, vital for attosecond-scale optoelectronics, is elusive when studied with traditional pump-probe metrology as the dynamics distort any probing field on the timescale of the carrier, rather than that of the envelope. Here we apply field-resolved optical metrology to these dynamics and report the direct observation of the evolving optical properties of silicon and silica during the first few femtoseconds following a near-1-fs carrier injection. We observe that the Drude-Lorentz response forms within several femtoseconds-a time interval much shorter than the inverse plasma frequency. This is in contrast to previous measurements in the terahertz domain8,9 and central to the quest to speed up electron-based signal processing.

4.
Sci Adv ; 8(51): eade1029, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36542717

ABSTRACT

Optical-field sampling techniques provide direct access to the electric field of visible and near-infrared light. The existing methods achieve the necessary bandwidth using highly nonlinear light-matter interaction that involves ionization of atoms or generation of charge carriers in solids. We demonstrate an alternative, all-optical approach for measuring electric fields of broadband laser pulses, which offers an advantage in terms of sensitivity and signal-to-noise ratio and extends the detection bandwidth of optical methods to the petahertzdomain.

5.
Opt Express ; 30(11): 18179-18188, 2022 May 23.
Article in English | MEDLINE | ID: mdl-36221624

ABSTRACT

Access to subtle ultrafast effects of light-matter interaction often requires highly sensitive field detection schemes. Electro-optic sampling, being an exemplary technique in this regard, lacks high sensitivity in an imaging geometry. We demonstrate a straightforward method to significantly improve the contrast of electric field images in spatially resolved electro-optic sampling. A thin-film polarizer is shown to be an effective tool in enhancing the sensitivity of the electro-optic imaging system, enabling an adjustment of the spectral response. We show a further increase of the signal-to-noise ratio through the direct control of the carrier envelope phase of the imaged field.

6.
Nat Commun ; 13(1): 1111, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35236857

ABSTRACT

The measurement and control of light field oscillations enable the study of ultrafast phenomena on sub-cycle time scales. Electro-optic sampling (EOS) is a powerful field characterization approach, in terms of both sensitivity and dynamic range, but it has not reached beyond infrared frequencies. Here, we show the synthesis of a sub-cycle infrared-visible pulse and subsequent complete electric field characterization using EOS. The sampled bandwidth spans from 700 nm to 2700 nm (428 to 110 THz). Tailored electric-field waveforms are generated with a two-channel field synthesizer in the infrared-visible range, with a full-width at half-maximum duration as short as 3.8 fs at a central wavelength of 1.7 µm (176 THz). EOS detection of the complete bandwidth of these waveforms extends it into the visible spectral range. To demonstrate the power of our approach, we use the sub-cycle transients to inject carriers in a thin quartz sample for nonlinear photoconductive field sampling with sub-femtosecond resolution.

7.
Nature ; 577(7788): 52-59, 2020 01.
Article in English | MEDLINE | ID: mdl-31894146

ABSTRACT

The proper functioning of living systems and physiological phenotypes depends on molecular composition. Yet simultaneous quantitative detection of a wide variety of molecules remains a challenge1-8. Here we show how broadband optical coherence opens up opportunities for fingerprinting complex molecular ensembles in their natural environment. Vibrationally excited molecules emit a coherent electric field following few-cycle infrared laser excitation9-12, and this field is specific to the sample's molecular composition. Employing electro-optic sampling10,12-15, we directly measure this global molecular fingerprint down to field strengths 107 times weaker than that of the excitation. This enables transillumination of intact living systems with thicknesses of the order of 0.1 millimetres, permitting broadband infrared spectroscopic probing of human cells and plant leaves. In a proof-of-concept analysis of human blood serum, temporal isolation of the infrared electric-field fingerprint from its excitation along with its sampling with attosecond timing precision results in detection sensitivity of submicrograms per millilitre of blood serum and a detectable dynamic range of molecular concentration exceeding 105. This technique promises improved molecular sensitivity and molecular coverage for probing complex, real-world biological and medical settings.


Subject(s)
Biomarkers/blood , Blood Chemical Analysis/methods , Serum/chemistry , Spectrophotometry, Infrared , Biomarkers/chemistry , Blood Chemical Analysis/instrumentation , Humans , Sensitivity and Specificity , Water/chemistry
8.
Nat Commun ; 11(1): 430, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31969568

ABSTRACT

The sub-cycle interaction of light and matter is one of the key frontiers of inquiry made accessible by attosecond science. Here, we show that when light excites a pair of charge carriers inside of a solid, the transition probability is strongly localized to instants slightly after the extrema of the electric field. The extreme temporal localization is utilized in a simple electronic circuit to record the waveforms of infrared to ultraviolet light fields. This form of petahertz-bandwidth field metrology gives access to both the modulated transition probability and its temporal offset from the laser field, providing sub-fs temporal precision in reconstructing the sub-cycle electronic response of a solid state structure.

9.
Science ; 357(6357): 1239-1240, 2017 09 22.
Article in English | MEDLINE | ID: mdl-28935793
10.
Opt Express ; 24(10): 10286-94, 2016 May 16.
Article in English | MEDLINE | ID: mdl-27409853

ABSTRACT

We demonstrate pulse shortening of 1-ps Yb:YAG thin-disk regenerative amplifier to 500 fs by cross-polarized wave generation (XPW) in a 6 mm BaF2 crystal. The process is self-compressed and has 8.5% conversion efficiency corresponding to 18 µJ energy. Our theoretical and experimental investigation shows that the factor of 3 spectral broadening and pulse shortening in ps-XPW-generation only happens in unsaturated regime. We demonstrate that the initial spectral chirp affects the spectral broadening and pulse shortening of XPW pulses.

11.
Opt Express ; 24(5): 5628-5637, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-29092384

ABSTRACT

We present the generation of optical pulses with a spectral range of 500-2400 nm and energies up to 10 µJ at 1 kHz repetition rate by cascaded second-order nonlinear interaction of few-cycle pulses in beta-barium borate (BBO). Numerical simulations with a 1D+time split-step model are performed to explain the experimental findings. The large bandwidth and smooth spectral amplitude of the resulting pulses make them an ideal seed for ultra-broadband optical parametric chirped pulse amplification and an attractive source for spectroscopic applications.

13.
Opt Express ; 22(25): 31440-7, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25607094

ABSTRACT

The dynamics of chirped pulse amplification in thin-disk regenerative amplifiers relevant to the pumping of optical parametric chirp pulse amplification systems are described. It is shown that the suitability for reproducible pumping of subsequent nonlinear processes requires a balance between the demands of avoiding chaotic pulse train dynamics and providing a reproducible spectral phase. We describe measures that may be taken to ensure that a laser system operates in the desired stable regime.

14.
Opt Lett ; 38(20): 4216-9, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24321963

ABSTRACT

We present experimental observations and corresponding numerical simulations illustrating the difference-frequency generation of mid-infrared radiation using few-cycle near-infrared-to-visible pulses, which yields conversion efficiencies above 12% in beta-barium borate crystal. Type I and type II phase-matching are shown to yield qualitatively different intensity-scaling behavior, with the former showing higher overall efficiency, especially with the addition of a zero-order wave plate for modifying the polarization state of the pulse, and the latter having a better stability of the spectrum versus input intensity.

15.
Phys Rev Lett ; 110(6): 067402, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23432307

ABSTRACT

We investigate the influence of carrier cooling dynamics in TiO(2) on the excited-state potential energy surface along the A(1g) optical phonon coordinate after above band-gap excitation using ultrashort ultraviolet pulses. The large amplitude coherent oscillation observed in a pump-probe transient reflectivity measurement shows a phase shift of -0.2π with respect to a purely instantaneous displacive excitation. The dynamic evolution of the potential energy surface minimum of the coherent phonon coordinate is explored using accurate density functional theory calculations, which confirm a shift of the potential energy surface minimum upon resonant laser excitation and reveal a significant positive contribution to the displacive force due to the cooling of the excited hot electron-hole plasma. We show that this noninstantaneous effect can quantitatively explain the experimentally observed phase using reasonable assumptions for the parameters characterizing the excited carriers. Our work demonstrates that the fast equilibration dynamics of laser-excited nonequilibrium carrier populations can have a pronounced effect on the initial structural response of crystalline solids.

16.
Nature ; 493(7430): 70-4, 2013 Jan 03.
Article in English | MEDLINE | ID: mdl-23222521

ABSTRACT

The time it takes to switch on and off electric current determines the rate at which signals can be processed and sampled in modern information technology. Field-effect transistors are able to control currents at frequencies of the order of or higher than 100 gigahertz, but electric interconnects may hamper progress towards reaching the terahertz (10(12) hertz) range. All-optical injection of currents through interfering photoexcitation pathways or photoconductive switching of terahertz transients has made it possible to control electric current on a subpicosecond timescale in semiconductors. Insulators have been deemed unsuitable for both methods, because of the need for either ultraviolet light or strong fields, which induce slow damage or ultrafast breakdown, respectively. Here we report the feasibility of electric signal manipulation in a dielectric. A few-cycle optical waveform reversibly increases--free from breakdown--the a.c. conductivity of amorphous silicon dioxide (fused silica) by more than 18 orders of magnitude within 1 femtosecond, allowing electric currents to be driven, directed and switched by the instantaneous light field. Our work opens the way to extending electronic signal processing and high-speed metrology into the petahertz (10(15) hertz) domain.

17.
Opt Lett ; 37(23): 4973-5, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23202108

ABSTRACT

We produce 1.5 cycle (10.5 fs), 1.2 mJ, 3 kHz carrier-envelope-phase-stable pulses at 2.1 µm carrier wavelength, from a three-stage optical parametric chirped-pulse amplifier system, pumped by an optically synchronized 1.6 ps Yb:YAG thin disk laser. A chirped periodically poled lithium niobate crystal is used to generate the ultrabroad spectrum needed for a 1.5 cycle pulse through difference frequency mixing of spectrally broadened pulse from a Ti:sapphire amplifier. It will be an ideal tool for producing isolated attosecond pulses with high photon energies.

18.
Opt Lett ; 35(13): 2248-50, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20596209

ABSTRACT

We demonstrate generation and measurement of intense deep-ultraviolet light pulses with a duration of approximately 2.8 fs (FWHM of the intensity envelope) and a wavelength distribution between 230 and 290 nm. They emerge via direct frequency upconversion of sub-4 fs laser pulses of a carrier wavelength of approximately 750 nm focused into an Ne-filled, quasi-static gas cell. Dispersion-free, third-order autocorrelation measurements provide access to their temporal intensity profile.

19.
Phys Rev Lett ; 103(2): 023001, 2009 Jul 10.
Article in English | MEDLINE | ID: mdl-19659200

ABSTRACT

Electrons ionized from an atom or molecule by circularly or elliptically polarized femtosecond omega and 2omega pulses exhibit different trajectory orientations as the relative phase between the two pulses changes. Macroscopically, the polarization of the terahertz wave emitted during the ionization process was found to be coherently controllable through the optical phase. This new finding can be completely reproduced by numerical simulation and may enable fast terahertz wave modulation and coherent control of nonlinear responses excited by intense terahertz waves with controllable polarization.

SELECTION OF CITATIONS
SEARCH DETAIL
...