Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Chemistry ; : e202401892, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857115

ABSTRACT

In the present study, we report a π-extended conjugated molecular cleft, two zinc(II)porphyrin bearing bisstyrylBODIPY (dyad, 1) has been synthesized. The binding of 1 via a 'two-point' metal-ligand coordination of a bis-pyridyl fulleropyrrolidine (2), forming a stable self-assembled supramolecular complex (1:2), has been established. The self-assembled supramolecular complex has been fully characterized by a suite of physico-chemical methods, including TD-DFT studies. From the established energy diagram, both energy and electron transfer events was envisioned. In dyad 1, selective excitation of zinc(II)porphyrin leads to efficient singlet-singlet excitation transfer to (bisstyrly)BODIPY with an energy transfer rate constant, kEnT of 2.56 x 1012 s-1. In complex 1:2, photoexcitation of zinc(II)porphyrin results in ultrafast photoinduced electron transfer with a charge separation rate constant, kCS of 2.83 x 1011 s-1, and a charge recombination rate constant, kCR of 2.51 x 109 s-1. For excitation at 730 nm corresponding to bisstyrylBODIPY, similar results are obtained, where a biexponential with estimated values of kCS 3.44 x 1011 s-1 and 2.97 x 1010 s-1, and a kCR value of 2.10 x 1010 s-1. The newly built self-assembled supramolecular complex has been shown to successfully mimic the early events of the photosynthetic antenna-reaction center events.

2.
Chempluschem ; : e202400348, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856517

ABSTRACT

Fundamental discoveries in electron transfer advance scientific and technological advancements. It is suggested that in plant photosynthesis, the primary donor, a chlorophyll dimer forms an initial excited symmetry-breaking charge transfer state (1CT*) upon photoexcitation that subsequently promotes sequential electron transfer (ET) events.  In the present study, we demonstrate the former photochemical event using an excited charge transfer molecule as a donor. For this, electron-deficient perylenediimide (PDI) is functionalized with three electron-rich piperidine entities at the bay positions resulting in a far-red emitting CT molecule (DCT). Further, this molecule is covalently linked to another PDI (APDI) carrying no substituents at the bay positions resulting in wide-band capturing DCT-APDI conjugates. Selective excitation of the CT band of DCT in these conjugates leads to an initial 1DCT* that undergoes subsequent ET involving APDI resulting in DCT.+- APDI.- charge separation product (kCS ~ 109 s-1). Conversely, when APDI was directly excited, ultrafast energy transfer (ENT) from 1APDI* to DCT (kENT ~ 1011 s-1) followed by ET from 1DCT* to PDI is witnessed. The present findings, are key to understanding the intricate ET events taking place in complex natural photosynthetic systems possessing multiple photoactive entities.

3.
J Am Chem Soc ; 146(19): 13509-13518, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38710108

ABSTRACT

The importance of diameter-sorted single-wall carbon nanotubes (SWCNTs) noncovalently bound to a donor-acceptor molecular cleft, 1, in prolonging the lifetime of charge-separated states is successfully demonstrated. For this, using a multistep synthetic procedure, a wide-band capturing, multimodular, C60-bisstyrylBODIPY-(zinc porphyrin)2, molecular cleft 1, was newly synthesized and shown to bind diameter-sorted SWCNTs. The molecular cleft and its supramolecular assemblies were characterized by a suite of physicochemical techniques. Free-energy calculations suggested that both the (6,5) and (7,6) SWCNTs bound to 1 act as hole acceptors during the photoinduced sequential electron transfer events. Consequently, selective excitation of 1 in 1:SWCNT hybrids revealed a two-step electron transfer, leading to the formation of charge-separated states. Due to the distant separation of the cation and anion radical species within the supramolecules, improved lifetimes of the charge-separated states could be achieved. The present supramolecular strategy of improving charge separation involving SWCNTs and donor-acceptor molecular clefts highlights the potential application of these hybrid materials for various light energy harvesting and optoelectronic applications.

4.
J Phys Chem A ; 128(21): 4233-4241, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38758579

ABSTRACT

We have designed, synthesized, and characterized a donor-acceptor triad, SPS-PPY-C60, that consists of a π-interacting phenothiazine-linked porphyrin as a donor and sensitizer and fullerene as an acceptor to seek charge separation upon photoexcitation. The optical absorption spectrum revealed red-shifted Soret and Q-bands of porphyrin due to charge transfer-type interactions involving the two ethynyl bridges carrying electron-rich and electron-poor substituents. The redox properties suggested that the phenothiazine-porphyrin part of the molecule is easier to oxidize and the fullerene part is easier to reduce. DFT calculations supported the redox properties wherein the electron density of the highest molecular orbital (HOMO) was distributed over the donor phenothiazine-porphyrin entity while the lowest unoccupied molecular orbital (LUMO) was distributed over the fullerene acceptor. TD-DFT studies suggested the involvement of both the S2 and S1 states in the charge transfer process. The steady-state emission spectrum, when excited either at porphyrin Soret or visible band absorption maxima, revealed quenched emission both in nonpolar and polar solvents, suggesting the occurrence of excited state events. Finally, femtosecond transient absorption spectral studies were performed to witness the charge separation by utilizing solvents of different polarities. The transient data was further analyzed by GloTarAn by fitting the data with appropriate models to describe photochemical events. From this, the average lifetime of the charge-separated state calculated was found to be 169 ps in benzonitrile, 319 ps in dichlorobenzene, 1.7 ns in toluene for Soret band excitation, and ∼320 ps for Q-band excitation in benzonitrile.

5.
Chem Sci ; 15(3): 906-913, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38239676

ABSTRACT

Symmetry breaking charge transfer is one of the important photo-events occurring in photosynthetic reaction centers that is responsible for initiating electron transfer leading to a long-lived charge-separated state and has been successfully employed in light-to-electricity converting optoelectronic devices. In the present study, we report a newly synthesized, far-red absorbing and emitting BODIPY-dimer to undergo symmetry-breaking charge transfer leading to charge-separated states of appreciable lifetimes in polar solvents. Compared to its monomer analog, both steady-state and time-resolved fluorescence originating from the S1 state of the dimer revealed quenching which increased with an increase in solvent polarity. The electrostatic potential map from DFT and the time-dependent DFT calculations suggested the existence of a quadrupolar type charge transfer state in polar solvents, and the singlet excited state to be involved in the charge separation process. The electrochemically determined redox gap being smaller than the energy of the S1 state supported the thermodynamic feasibility of the envisioned symmetry-breaking charge transfer and separation. The spectrum of the charge-separated state arrived from spectroelectrochemical studies, revealing diagnostic peaks helpful for transient spectral interpretation. Finally, ultrafast transient pump-probe spectroscopy provided conclusive evidence of diabatic charge separation in polar solvents by far-red pulsed laser light irradiation. The measured lifetime of the final charge-separated states was found to be 165 ps in dichlorobenzene, 140 ps in benzonitrile, and 43 ps in dimethyl sulfoxide, revealing their significance in light energy harvesting, especially from the less-explored far-red region.

6.
Chemistry ; 29(56): e202302839, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37702225

ABSTRACT

Invited for the cover of this issue are the groups of Fernando Fernández-Lázaro and Ángela Sastre-Santos at the Universidad Miguel Hernández, Elche, Spain, and Francis D'Souza at the University of North Texas at Denton, Texas, USA. The image depicts the structure and properties of bis-styryl BODIPY-perylenediimide donor-acceptor constructs. Read the full text of the article at 10.1002/chem.202301686.

7.
J Phys Chem A ; 127(30): 6191-6203, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37467488

ABSTRACT

A series of pyrazinepyrene-fused zinc phthalocyanines (ZnPc-Pyrn) have been newly synthesized by reacting quinoxaline and the corresponding diamino-functionalized phthalocyanines as a new class of π-extended phthalocyanine systems. Bathochromically shifted absorption as a function of the number of pyrazinepyrene entities due to extended π-conjugation and quenched fluorescence due to the presence of fused pyrazinepyrene were witnessed. The electronic structures of these phthalocyanines were probed by systematic computational and electrochemical studies, while the excited-state properties were examined by pump-probe spectroscopies operating at the femto- and nanosecond time scales. Similar to the excited singlet lifetimes, the excited triplet states also revealed diminished lifetimes with an increased number of pyrazinepyrene entities. Further, the coordinatively unsaturated zinc in these molecules was coordinated with phenyl imidazole-functionalized fullerene, ImC60, to form a new series of donor-acceptor conjugates. Upon full characterization of these conjugates, the occurrence of excited-state charge separation was established by transient pump-probe spectroscopy, covering wide temporal and spatial regions. The lifetime of the final charge-separated states was ∼2 ns and decreased with an increase in the number of fused pyrazinepyrene units.

8.
Chemistry ; 29(56): e202301686, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37428999

ABSTRACT

Two wide-band-capturing donor-acceptor conjugates featuring bis-styrylBODIPY and perylenediimide (PDI) have been newly synthesized, and the occurrence of ultrafast excitation transfer from the 1 PDI* to BODIPY, and a subsequent electron transfer from the 1 BODIPY* to PDI have been demonstrated. Optical absorption studies revealed panchromatic light capture but offered no evidence of ground-state interactions between the donor and acceptor entities. Steady-state fluorescence and excitation spectral recordings provided evidence of singlet-singlet energy transfer in these dyads, and quenched fluorescence of bis-styrylBODIPY emission in the dyads suggested additional photo-events. The facile oxidation of bis-styrylBODIPY and facile reduction of PDI, establishing their relative roles of electron donor and acceptor, were borne out by electrochemical studies. The electrostatic potential surfaces of the S1 and S2 states, derived from time-dependent DFT calculations, supported excited charge transfer in these dyads. Spectro-electrochemical studies on one-electron-oxidized and one-electron-reduced dyads and the monomeric precursor compounds were also performed in a thin-layer optical cell under corresponding applied potentials. From this study, both bis-styrylBODIPY⋅+ and PDI⋅- could be spectrally characterizes and were subsequently used in characterizing the electron-transfer products. Finally, pump-probe spectral studies were performed in dichlorobenzene under selective PDI and bis-styrylBODIPY excitation to secure energy and electron-transfer evidence. The measured rate constants for energy transfer, kENT , were in the range of 1011  s-1 , while the electron transfer rate constants, kET , were in the range of 1010  s-1 , thus highlighting their potential use in solar energy harvesting and optoelectronic applications.

9.
Inorg Chem ; 61(42): 16573-16585, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36223643

ABSTRACT

To study the photophysical and redox properties as a function of meso-aryl units, a series of hypervalent phosphorus(V) porphyrins, PP(OMe)2·PF6, PMP(OMe)2·PF6, PDMP(OMe)2·PF6, P345TMP(OMe)2·PF6, and P246TMP(OMe)2·PF6, with phenyl (P), 4-methoxyphenyl (MP), 3,5-dimethoxyphenyl (DMP), 3,4,5-trimethoxyphenyl (345TMP), and 2,4,6-trimethoxyphenyl (246TMP) units, respectively, have been synthesized. The P(+5) in the cavity makes the porphyrin ring electron-poor, whereas the methoxy groups make the meso-phenyl rings electron-rich. The presence of electron-rich and electron-poor portions within the porphyrin molecule promoted an intramolecular charge transfer (ICT). Also, the study suggests that the ICT depends on the number and position of the methoxy groups. The ICT is more prominent in m-methoxy-substituted phosphorus(V) porphyrins (PDMP(OMe)2.PF6, P345TMP(OMe)2·PF6) and almost no ICT was found in no-methoxy, o-methoxy, and/or p-methoxy phosphorus(V) porphyrins (PP(OMe)2·PF6, PMP(OMe)2·PF6, P246TMP(OMe)2·PF6). Transient absorption studies indicate that the ICT takes place on the picosecond time scale. The most striking results come from P246TMP(OMe)2·PF6, where each phenyl ring carries three methoxy units, like the P345TMP(OMe)2·PF6, but it failed to induce the ICT process. Electrochemical studies and time-dependent density functional theory (TD-DFT) calculations were used to support the experimental results. This study extensively explores why and how slight variations in meso-aryl substitutions lead to intricate changes in the photophysical and redox properties of phosphorus(V) porphyrins.


Subject(s)
Porphyrins , Porphyrins/chemistry , Phosphorus , Electrons , Oxidation-Reduction
10.
Angew Chem Int Ed Engl ; 61(49): e202212474, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36289048

ABSTRACT

Electron donor-acceptor (DA) hybrids comprised of single-wall carbon nanotubes (SWCNTs) are promising functional materials for light energy conversion. However, the DA hybrids built on SWCNTs have failed to reveal the much-sought long-lived charge separation (CS) due to the close proximity of the DA entities facilitating charge recombination. Here, we address this issue and report an elegant strategy to build multi-modular DA hybrids capable of producing long-lived CS states. For this, a nano tweezer featuring V-shape configured BODIPY was synthesized to host SWCNTs of different diameters via π-stacking. Supported by spectral, electrochemical, and computational studies, the established energy scheme revealed the possibility of sequential electron transfer. Systematic pump-probe studies covering wide spatial and temporal scales provided evidence of CS from the initial 1 BODIPY* ultimately resulting in C60 ⋅- -BODIPY-SWCNT⋅+ CS states of lifetimes in the 20-microsecond range.

11.
J Am Chem Soc ; 144(24): 10830-10843, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35587544

ABSTRACT

Chromophores that generate singlet oxygen (1O2) in water are essential to developing noninvasive disease treatments using photodynamic therapy (PDT). A facile approach for formation of stable colloidal nanoparticles of 1O2 photosensitizers, which exhibit aggregation enhanced 1O2 generation in water toward applications as PDT agents, is reported. Chromophore encryption within a fuchsonarene macrocyclic scaffold insulates the photosensitizer from aggregation induced deactivation pathways, enabling a higher chromophore density than typical 1O2 generating nanoparticles. Aggregation enhanced 1O2 generation in water is observed, and variation in molecular structure allows for regulation of the physical properties of the nanoparticles which ultimately affects the 1O2 generation. In vitro activity and the ability of the particles to pass through the cell membrane into the cytoplasm is demonstrated using confocal fluorescence microscopy with HeLa cells. Photosensitizer encryption in rigid macrocycles, such as fuchsonarenes, offers new prospects for the production of biocompatible nanoarchitectures for applications involving 1O2 generation.


Subject(s)
Photochemotherapy , Photosensitizing Agents , HeLa Cells , Humans , Oxygen , Photosensitizing Agents/chemistry , Singlet Oxygen/metabolism , Water
12.
Dalton Trans ; 51(15): 5890-5903, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35348158

ABSTRACT

The +5 oxidation state of antimony induced push-pull style intramolecular charge transfer in an elegantly designed axial dimethoxyantimony(V) porphyrin series: SbP(OMe)2·PF6, SbMP(OMe)2·PF6, SbDMP(OMe)2·PF6, SbTMP(OMe)2·PF6 with phenyl (P), 4-methoxyphenyl (MP), 3,5-dimethoxyphenyl (DMP), and 3,4,5-trimethoxyphenyl (TMP) units, respectively, in its meso positions. The Sb(+5) made the porphyrin ring electron-poor, whereas the methoxy groups on the phenyl unit produced electron-rich sites within the molecule. The presence of electron-poor and electron-rich parts in the same molecule resulted in a push-pull type intramolecular charge transfer (ICT). However, the ICT is strongly dependent on the position of the methoxy groups on the phenyl ring. The charge transfer character is more pronounced in meta-methoxy substituted antimony(V) derivatives (SbDMP(OMe)2·PF6, SbTMP(OMe)2·PF6) than the para-methoxy or no-methoxy substituted antimony(V) derivatives (SbP(OMe)2·PF6, SbMP(OMe)2·PF6). Steady-state and transient spectroscopic techniques, as well as solvatochromism techniques, were employed to establish the tunable ICT. Additionally, time-dependant density functional theory (TD-DFT) calculations were used to complement the experimental results. The systematic study of antimony(V) porphyrins, especially the tunable push-pull nature could play an important role in instigating high yield charge-separated states in multi-modular donor-acceptor systems for solar energy conversion and molecular electronic and photonic applications.


Subject(s)
Porphyrins , Solar Energy , Antimony , Density Functional Theory , Electrons , Porphyrins/chemistry
13.
Chemistry ; 28(13): e202104574, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35061302

ABSTRACT

Strong push-pull interactions between electron donor, diaminoazobenzene (azo), and an electron acceptor, perylenediimide (PDI), entities in the newly synthesized A-D-A type triads (A=electron acceptor and D=electron donor) and the corresponding A-D dyads are shown to reveal wide-band absorption covering the entire visible spectrum. Electrochemical studies revealed the facile reduction of PDI and relatively easier oxidation of diaminoazobenzene in the dyads and triads. Charge transfer reversal using fluorescence-spectroelectrochemistry wherein the PDI fluorescence recovery upon one-electron oxidation, deterring the charge-transfer interactions, was possible to accomplish. The charge transfer state density difference and the frontier orbitals from the DFT calculations established the electron-deficient PDI to be an electron acceptor and diaminoazobenzene to be an electron donor resulting in energetically closely positioned PDIδ- -Azoδ+ -PDIδ- quadrupolar charge-transfer states in the case of triads and Azoδ+ -PDIδ- dipolar charge-transfer states in the case of dyads. Subsequent femtosecond transient absorption spectral studies unequivocally proved the occurrence of excited-state charge transfer in these dyads and triads in benzonitrile wherein the calculated forward charge transfer rate constants, kf , were limited to instrument response factor, meaning >1012  s-1 revealing the occurrence of ultrafast photo-events. The charge recombination rate constant, kr , was found to depend on the type of donor-acceptor conjugates, that is, it was possible to establish faster kr in the case of triads (∼1011  s-1 ) compared to dyads (∼1010  s-1 ). Modulating both ground and excited-state properties of PDI with the help of strong quadrupolar and dipolar charge transfer and witnessing ultrafast charge transfer events in the studied triads and dyads is borne out from the present study.

14.
Inorg Chem ; 60(23): 17952-17965, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34797977

ABSTRACT

Six new "axial-bonding" type "phosphorus(V) porphyrin-naphthalene" conjugates have been prepared consisting of octaethylporphyrinatophosphorus(V) (POEP+)/tetraphenylporphyrinatophosphorus(V) (PTPP+) and naphthalene (NP). The distance between the porphyrin and NP was systematically varied using polyether bridges. The unique structural topology of the octaethylporphyrinatophosphorus(V) (POEP+) and tetraphenylporphyrinatophosphorus(V) (PTPP+) enabled construction of mono- and disubstituted phosphorus(V) porphyrin-naphthalene conjugates, respectively. The steady-state and transient spectral properties were investigated as a function of redox properties, distance, and molecular topology. Strong electronic interactions between the phosphorus(V) porphyrin and NP in directly bound conjugates were observed. The established energy diagrams predicted reductive electron transfer involving singlet excited phosphorus(V) porphyrin and NP to generate high-energy (∼1.83-2.11 eV) charge-separated states (POEP/PTPP)•-(NP)•+. Femtosecond transient absorption spectral studies revealed rapid deactivation of singlet excited phosphorus(V) porphyrin due to charge separation wherein the estimated forward rate constants were in the range of 109-1010 s-1 and were dependent on the distance between the NP and porphyrins units, as well as the redox potentials of the type of the phosphorus(V) porphyrin. Additionally, due to high exothermicity and low-lying triplet states, the charge recombination process was found to be rapid, leading to populating the triplet states of phosphorus(V) porphyrins.

15.
Chemistry ; 27(60): 14996-15005, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34405918

ABSTRACT

Photoinduced charge transfer and separation events in a newly synthesized azobenzene-bridged perylenediimide-dimer (PDI-dimer) are demonstrated. Trans-to-cis conversion (∼50 % efficiency) from the initial trans PDI-dimer by 355 nm pulsed laser light, and its reversal, cis-to-trans, process by 435 nm laser light irradiation has been possible to accomplish. Efficient fluorescence quenching in the PDI-dimer, more so for the cis isomer was witnessed, and such quenching increased with increasing solvent polarity. DFT-calculated geometry and electronic structures helped in visualizing the charge transfer in the PDI-dimer in both isomeric forms, and also revealed certain degree of participation of the azobenzene entity in the charge transfer events. Femtosecond transient absorption spectral studies confirmed occurrence of both charge transfer followed by charge separation in the studied PDI-dimer in both trans and cis forms in polar solvents, and the evaluated time constants from Global target analysis revealed accelerated events in the cis PDI-dimer due to proximity effects. The present study offers key insights on the role of the azobenzene bridge, and the dimer geometry in governing the excited state charge transfer and separation in symmetrically linked PDI dimer.

16.
Chem Sci ; 12(13): 4925-4930, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-34168764

ABSTRACT

A new type of push-pull charge transfer complex, viz., a spiro-locked N-heterocycle-fused zinc porphyrin, ZnP-SQ, is shown to undergo excited state charge separation, which is enhanced by axial F- binding to the Zn center. In this push-pull design, the spiro-quinone group acts as a 'lock' promoting charge transfer interactions by constraining mutual coplanarity of the meso-phenol-substituted electron-rich Zn(ii) porphyrin and an electron deficient N-heterocycle, as revealed by electrochemical and computational studies. Spectroelectrochemical studies have been used to identify the spectra of charge separated states, and charge separation upon photoexcitation of ZnP has been unequivocally established by using transient absorption spectroscopic techniques covering wide spatial and temporal regions. Further, global target analysis of the transient data using GloTarAn software is used to obtain the lifetimes of different photochemical events and reveal that fluoride anion complexation stabilizes the charge separated state to an appreciable extent.

17.
Chempluschem ; 86(4): 674-680, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33881234

ABSTRACT

A series of meso-biphenyl linked chlorin and bacteriochlorin dimers, derived from naturally occurring chlorophyll (Chl-a) and bacteriochlorophyll (BChl-a) were synthesized in 32 % to 44 % yields and characterized, as photosynthetic antenna mimics, and a new class of singlet oxygen producing agents. The dimers are characterized by absorption, fluorescence, electrochemical, spectroelectrochemical and computational methods to evaluate their physico-chemical properties, and to identify ground and excited state interactions. Evidence of excited energy exchange among the chromophores in the dimer is derived from femtosecond transient absorption spectral studies. Rate constants for excitation hopping were in the order of 1011  s-1 , indicating occurrence of efficient processes. Nanosecond transient absorption studies confirmed relaxation of the singlet excited chlorin and bacteriochlorin dimers to their corresponding triplet states (3 Chl* and 3 Bchl*). As predicted by the established energy level diagrams, both 3 Chl* and 3 Bchl* are shown to be capable of producing singlet oxygen with appreciable quantum yields (ϕSO ∼0.3).

18.
Commun Chem ; 4(1): 29, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-36697553

ABSTRACT

Acenes and azaacenes lie at the core of molecular materials' applications due to their important optical and electronic features. A critical aspect is provided by their heteroatom multiplicity, which can strongly affect their properties. Here we report pyrazinacenes containing the dihydro-decaazapentacene and dihydro-octaazatetracene chromophores and compare their properties/functions as a model case at an oxidizing metal substrate. We find a distinguished, oxidation-state-dependent conformational adaptation and self-assembly behaviour and discuss the analogies and differences of planar benzo-substituted decaazapentacene and octaazatetracene forms. Our broad experimental and theoretical study reveals that decaazapentacene is stable against oxidation but unstable against reduction, which is in contrast to pentacene, its C-H only analogue. Decaazapentacenes studied here combine a planar molecular backbone with conformationally flexible substituents. They provide a rich model case to understand the properties of a redox-switchable π-electronic system in solution and at interfaces. Pyrazinacenes represent an unusual class of redox-active chromophores.

19.
Chemistry ; 26(58): 13177-13183, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32671876

ABSTRACT

Nitrogen and phosphorus-containing ions such as ammonium, nitrates and phosphates are anthropogenic pollutants while ammonium nitrate may be diverted for nefarious purposes in improvised explosive devices. Crown ether-oxoporphyrinogen conjugates (OxP-crowns) are used to selectively detect nitrates, especially their ion pairs with K+ and NH4 + , based on ion pair complexation of OxP-crowns under phase transfer conditions. The presence of phosphate and carbonate lead to deprotonation of OxP-crowns. OxP-1N18C6 is capable of extracting ion pairs with nitrate from aqueous phase leading to a selective chromogenic response. Deprotonation of the OxP moiety leads to [OxP- ]-1N18C6[K+ ] and is promoted by crown ether selective cation binding coupled with hydration of basic oxoanions, which are constrained to remain in the aqueous phase. This work illustrates the utility of molecular design to exploit partitioning and ion hydration effects establishing the selectivity of the chromogenic response.

20.
Phys Chem Chem Phys ; 22(25): 14356-14363, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32568321

ABSTRACT

A multichromophoric triad, ZnP-OxP-C60 containing porphyrin (ZnTPP hereafter ZnP), oxoporphyrinogen (OxP) and fullerene (C60) has been synthesized to probe the intramolecular dynamics of its electron and energy transfer in relation to the presence of the closely linked electron deficient OxP-C60 'special pair', constructed as a mimic of the naturally occurring photosynthetic antenna-reaction center. The DFT optimized structure of the triad reveals the relative spatial remoteness of the ZnP entity with proximal OxP/C60 entities. Free-energetics of different energy and electron transfer events were estimated using spectral, computational and electrochemical studies, according to the Rehm-Weller approach. Femtosecond transient absorption spectral studies revealed energy transfer from 1ZnP* to OxP to yield ZnP-1OxP*-C60, and electron transfer to yield ZnP˙+-OxP-C60˙- and/or ZnP-OxP˙+-C60˙- charge seperated states. That is, the ZnP entity in the triad operates as both antenna and electron donor to generate relatively long-lived charge separated states thus mimicking the early photoevents of natural photosynthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...