Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Transplantation ; 100(12): 2611-2620, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27861289

ABSTRACT

BACKGROUND: Blockade of CD28-mediated T cell costimulation by a modified cytotoxic T lymphocyte-associated antigen 4 (CTLA4-Ig), belatacept, is a clinically effective immunosuppressive therapy for the prevention of renal allograft rejection. Use of belatacept-based calcineurin inhibitor-free immunosuppression, however, has demonstrated an increased frequency of cellular rejection episodes and immunosuppression-related safety issues relative to conventional regimens. Furthermore, belatacept typically requires infusion for its administration chronically, which may present an inconvenience to patients. To address these issues, a novel CTLA4-Ig variant, ASP2409, with improved CD86 binding selectivity and affinity relative to belatacept was created using DNA shuffling directed evolution methods. METHODS: We evaluated the immunosuppressive effect of ASP2409 on in vitro alloimmune T cell responses, in vivo tetanus toxoid (TTx)-induced immunological responses and renal transplantation in cynomolgus monkeys. RESULTS: ASP2409 had 6.1-fold higher and 2.1-fold lower binding affinity to monkey CD86 and CD80 relative to belatacept, respectively. ASP2409 was 18-fold more potent in suppressing in vitro alloimmune T cell responses relative to belatacept. In a cynomolgus monkey TTx immunization model, ASP2409 inhibited anti-TTx immune responses at a 10-fold lower dose level than belatacept. In a cynomolgus monkey renal transplantation model, subcutaneous injection of 1 mg/kg ASP2409 prevented allograft rejection through complete CD86 and partial CD80 receptor occupancies and dramatically prolonged renal allograft survival in combination with tacrolimus or mycophenolate mofetil/methylprednisolone. CONCLUSIONS: These results support the potential of ASP2409 as an improved CTLA4-Ig for maintenance immunosuppression in organ transplantation.


Subject(s)
Abatacept/pharmacology , B7-2 Antigen/immunology , Immunoconjugates/pharmacology , Immunosuppressive Agents/pharmacology , Kidney Transplantation , Animals , B7-1 Antigen/immunology , CD28 Antigens/immunology , Graft Rejection , Graft Survival , Humans , Immunoconjugates/immunology , Immunoglobulin G/immunology , Immunosuppression Therapy , Kinetics , Macaca fascicularis , Male , T-Lymphocytes/immunology , Tetanus Toxoid/pharmacology
2.
Int Immunopharmacol ; 40: 310-317, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27662596

ABSTRACT

The CTLA4-Ig fusion proteins abatacept and belatacept inhibit CD28-mediated T cell activation by binding CD80 (B7-1) and CD86 (B7-2) costimulatory ligands and are clinically proven immunosuppressants used for rheumatoid arthritis and renal transplantation, respectively. Abatacept and belatacept preferentially bind CD80, yet CD86 has been implicated as the dominant ligand for CD28-mediated costimulation of T cells. We investigated the immunosuppressive effects of ASP2408, a novel CTLA4-Ig with CD86 selectivity and high potency created by directed evolution methods. Here we evaluated the effect of ASP2408 in vitro using cynomolgus monkey and rat T cell proliferation assays and in vivo using cynomolgus monkey tetanus toxoid (TTx) immunization and a rat rheumatoid arthritis model. ASP2408 was 290-fold and 21-fold more potent in suppressing in vitro monkey T cell proliferation than abatacept and belatacept, respectively. ASP2408 inhibited anti-TTx immunological reactions in cynomolgus monkey at a 10-fold lower dose level than belatacept, through complete CD86 and partial CD80 receptor occupancies, and also suppressed inflammation in the rat collagen-induced arthritis model. Overall, improved immunosuppressive potency of ASP2408 relative to abatacept and belatacept correlated well with improved CD86 binding affinity. These results may support the advantage of preferential enhancement of CD86 binding affinity to inhibit T cell-mediated immune response and improved dosing convenience in humans relative to abatacept or belatacept.


Subject(s)
B7-2 Antigen/immunology , Immunosuppressive Agents , Abatacept/blood , Abatacept/pharmacology , Abatacept/therapeutic use , Animals , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , B7-1 Antigen/immunology , Cell Proliferation/drug effects , Collagen Type II/immunology , Female , Foot/pathology , Immunosuppressive Agents/blood , Immunosuppressive Agents/pharmacokinetics , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Macaca fascicularis , Male , Rats , T-Lymphocytes/drug effects , Tetanus Toxoid/immunology
3.
Clin Pharmacol Drug Dev ; 5(5): 408-25, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27410490

ABSTRACT

ASP2408 is a next-generation anti-cytotoxic T lymphocyte antigen-4 fusion protein engineered for improved CD86 binding affinity as a treatment for rheumatoid arthritis (RA). In 72 healthy subjects (n = 6/treatment), ASP2408 was administered as single ascending doses intravenously at 0.003 to 10.0 mg/kg or subcutaneously at 0.3 to 3.0 mg/kg. It showed decreased clearance and prolonged half-life with increasing doses, consistent with target-mediated disposition. The apparent bioavailability was 36.3%-56.7% across single subcutaneous doses. Sixteen RA patients (n = 8/treatment) on stable methotrexate received 3 × 3.0 mg/kg subcutaneously every 4 weeks or every 2 weeks. Similar to single-dose treatment, ASP2408 concentrations peaked 2 to 3 days postdose, with a median t1/2 of approximately 8 days. Using CD86 receptor occupancy (RO) as a mechanistic biomarker, ASP2408 demonstrated dose-dependent binding to its target. ASP2408 3.0 mg/kg subcutaneously every 4 weeks and every 2 weeks led to a mean %CD86 RO ≥ 74.7% and ≥ 81.5%, respectively, within each dosing interval. ASP2408 was well tolerated across studies with no evidence of dose-limiting toxicity or clinically significant changes in clinical laboratory test results, vital signs, or 12-lead electrocardiograms. ASP2408 elicited antidrug antibodies in the majority of patients, but with no clinical sequelae.


Subject(s)
Antirheumatic Agents/administration & dosage , Arthritis, Rheumatoid/drug therapy , CTLA-4 Antigen/administration & dosage , Immunoconjugates/administration & dosage , Immunoglobulin G/administration & dosage , T-Lymphocytes/immunology , Administration, Intravenous , Adult , Aged , Antibodies/immunology , Antirheumatic Agents/adverse effects , Antirheumatic Agents/pharmacokinetics , B7-2 Antigen/metabolism , Dose-Response Relationship, Drug , Double-Blind Method , Female , Half-Life , Humans , Immunoconjugates/adverse effects , Immunoconjugates/pharmacokinetics , Immunoglobulin G/adverse effects , Injections, Subcutaneous , Male , Methotrexate/administration & dosage , Middle Aged , Young Adult
4.
Clin Pharmacol Drug Dev ; 5(4): 259-68, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27310327

ABSTRACT

ASP2409 represents a new class of CTLA4-Ig molecules with higher binding avidity and selectivity to CD86. This first-in-human study was to assess the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics of ASP2409 in stable rheumatoid arthritis patients on methotrexate therapy with a randomized, double-blind, placebo-controlled dose-escalation study design. Patients were enrolled and randomized in each of 8 dose-escalation cohorts ranging from 0.001 to 3.0 mg/kg to receive either ASP2409 or placebo in a sequential manner. Escalation to higher dose levels occurred in the absence of dose-limiting toxicity. A total of 57 patients completed the study. ASP2409 showed nonlinear PK over the dose range of 0.01 to 3.0 mg/kg following a single intravenous administration, indicating target-mediated drug disposition. Area under the concentration-time curve (AUC) and maximum concentration (Cmax ) increased at a greater than dose-proportional rate. The half-life of ASP2409 increased dose dependently and ranged from 1.57 to 6.68 days. ASP2409 showed a dose-dependent increase in the extent and duration of CD86 receptor occupancy. There were no clinically relevant safety issues up to a single dose of 3.0 mg/kg. No maximum tolerated dose was reached. The incidence and duration of antidrug antibodies did not correlate with adverse events. ClinicalTrials.gov identifier: NCT02171143.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Immunoconjugates/administration & dosage , Immunosuppressive Agents/administration & dosage , Methotrexate/administration & dosage , Administration, Intravenous , Adult , Aged , Antirheumatic Agents/administration & dosage , Antirheumatic Agents/adverse effects , Antirheumatic Agents/pharmacokinetics , Area Under Curve , Dose-Response Relationship, Drug , Double-Blind Method , Drug Therapy, Combination , Female , Half-Life , Humans , Immunoconjugates/adverse effects , Immunoconjugates/pharmacokinetics , Immunosuppressive Agents/adverse effects , Immunosuppressive Agents/pharmacokinetics , Male , Middle Aged
5.
Protein Eng Des Sel ; 29(5): 159-67, 2016 May.
Article in English | MEDLINE | ID: mdl-26968452

ABSTRACT

The CTLA4-Ig therapeutics abatacept and belatacept inhibit CD28-mediated T cell activation by binding CD80 (B7-1) and CD86 (B7-2) co-stimulatory ligands. Both compounds preferentially bind CD80, yet CD86 has been implicated as the dominant co-stimulatory ligand. Using directed evolution methods, novel CTLA4-Ig variants were created with selective CD86 binding affinity, a property that confers increased immunosuppressive potency and potentially improved efficacy and safety profiles. Relative to abatacept (wild-type CTLA4-Ig), ASP2408 and ASP2409 have 83-fold and 220-fold enhanced binding affinity to CD86 while retaining 1.5-fold and 5.6-fold enhanced binding affinity to CD80, respectively. Improvements in CD86 binding affinity correlates with increased immunosuppressive potencyin vitroandin vivo Our results highlight the power of directed evolution methods to obtain non-intuitive protein engineering solutions and represent the first examples of CD86-selective CTLA4-Ig compounds that have entered clinical trials.


Subject(s)
Abatacept/genetics , Abatacept/pharmacology , B7-2 Antigen/metabolism , Directed Molecular Evolution , Immunoconjugates/metabolism , Immunoconjugates/pharmacology , Immunosuppressive Agents/metabolism , Immunosuppressive Agents/pharmacology , Abatacept/chemistry , Abatacept/metabolism , Amino Acid Sequence , Animals , COS Cells , Chlorocebus aethiops , Female , Humans , Immunoconjugates/chemistry , Immunosuppressive Agents/chemistry , Ligands , Mice , Models, Molecular , Protein Conformation , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...