Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Methods Programs Biomed ; 231: 107408, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36805279

ABSTRACT

BACKGROUND AND OBJECTIVE: Deep learning (DL) models have been used for medical imaging for a long time but they did not achieve their full potential in the past because of insufficient computing power and scarcity of training data. In recent years, we have seen substantial growth in DL networks because of improved technology and an abundance of data. However, previous studies indicate that even a well-trained DL algorithm may struggle to generalize data from multiple sources because of domain shifts. Additionally, ineffectiveness of basic data fusion methods, complexity of segmentation target and low interpretability of current DL models limit their use in clinical decisions. To meet these challenges, we present a new two-phase cross-domain transfer learning system for effective skin lesion segmentation from dermoscopic images. METHODS: Our system is based on two significant technical inventions. We examine a two- phase cross-domain transfer learning approach, including model-level and data-level transfer learning, by fine-tuning the system on two datasets, MoleMap and ImageNet. We then present nSknRSUNet, a high-performing DL network, for skin lesion segmentation using broad receptive fields and spatial edge attention feature fusion. We examine the trained model's generalization capabilities on skin lesion segmentation to quantify these two inventions. We cross-examine the model using two skin lesion image datasets, MoleMap and HAM10000, obtained from varied clinical contexts. RESULTS: At data-level transfer learning for the HAM10000 dataset, the proposed model obtained 94.63% of DSC and 99.12% accuracy. In cross-examination at data-level transfer learning for the Molemap dataset, the proposed model obtained 93.63% of DSC and 97.01% of accuracy. CONCLUSION: Numerous experiments reveal that our system produces excellent performance and improves upon state-of-the-art methods on both qualitative and quantitative measures.


Subject(s)
Skin Diseases , Skin , Humans , Machine Learning , Skin Diseases/diagnostic imaging
2.
Comput Biol Med ; 151(Pt A): 106231, 2022 12.
Article in English | MEDLINE | ID: mdl-36335811

ABSTRACT

Automated segmentation of medical images is crucial for disease diagnosis and treatment planning. Medical image segmentation has been improved based on the convolutional neural networks (CNNs) models. Unfortunately, they are still limited by scenarios in which the segmentation objective has large variations in size, boundary, position, and shape. Moreover, current CNNs have low explainability, restricting their use in clinical decisions. In this paper, we involve substantial use of various attentions in a CNN model and present an explainable multi-module semantic guided attention based network (MSGA-Net) for explainable and highly accurate medical image segmentation, which involves considering the most significant spatial regions, boundaries, scales, and channels. Specifically, we present a multi-scale attention module (MSA) to extract the most salient features at various scales from medical images. Then, we propose a semantic region-guided attention mechanism (SRGA) including location attention (LAM), channel-wise attention (CWA), and edge attention (EA) modules to extract the most important spatial, channel-wise, boundary-related features for interested regions. Moreover, we present a sequence of fine-tuning steps with the SRGA module to gradually weight the significance of interesting regions while simultaneously reducing the noise. In this work, we experimented with three different types of medical images such as dermoscopic images (HAM10000 dataset), multi-organ CT images (CHAOS 2019 dataset), and Brain tumor MRI images (BraTS 2020 dataset). Extensive experiments on all types of medical images revealed that our proposed MSGA-Net substantially increased the overall performance of all metrics over the existing models. Moreover, displaying the attention feature maps has more explainability than state-of-the-art models.


Subject(s)
Neural Networks, Computer , Semantics , Benchmarking , Neuroimaging , Image Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...