Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Sci Rep ; 14(1): 9866, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684797

ABSTRACT

A series of novel chromone derivatives of (N-(4-oxo-2-(trifluoromethyl)-4H-chromen-6-yl) benzamides) were synthesized by treating 7-amino-2-(trifluoromethyl)-4H-chromen-4-one with K2CO3 and/or NaH, suitable alkyl halides and acetonitrile and/or 1,4-dioxane. The obtained products are in high yields (87 to 96%) with various substituents in short reaction times with no more by-products and confirmed by FT-IR, 1H, and 13C-NMR Spectral data. The in vitro cytotoxic activity was examined against two human cancer cell lines, namely the human lung adenocarcinoma (A-549) and the human breast (MCF-7) cancer cell line. Compound 4h showed promising cytotoxicity against both cell lines with IC50 values of 22.09 and 6.40 ± 0.26 µg/mL respectively, compared to that of the standard drug. We also performed the in vitro antioxidant activity by DPPH radical, hydrogen peroxide, NO scavenging, and total antioxidant capacity (TAC) assay methods, and they showed significant activities. The possible binding interactions of all the synthesized chromone derivatives are also investigated against selective pharmacological targets of human beings, such as HERA protein for cytotoxic activity and Peroxiredoxins (3MNG) for antioxidant activity which showed closer binding free energies than the standard drugs and evidencing the above two types of activities.


Subject(s)
Antineoplastic Agents , Antioxidants , Benzamides , Molecular Docking Simulation , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Benzamides/pharmacology , Benzamides/chemistry , Benzamides/chemical synthesis , MCF-7 Cells , A549 Cells , Chromones/chemistry , Chromones/pharmacology , Chromones/chemical synthesis , Cell Line, Tumor , Structure-Activity Relationship
2.
Sci Rep ; 14(1): 4934, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418697

ABSTRACT

Plastic waste is being manufactured for the production of hydrogen. The amount of plastic waste collected annually is 189,953 tonnes from adjacent nations like Indonesia and Malaysia. Polyethylene (PE), Polypropylene (PP), Polyethylene Terephthalate (PET), Polyvinyl chloride (PVC), and Polystyrene (PS) are the five most prevalent forms of plastic found in most waste. Pyrolysis, water gas shift and steam reforming reaction, and pressure swing adsorption are the three main phases utilized and studied. In this research, authors examines the energy consumption on every stage. The plastic waste can be utilized to manufacture many hydrocarbons using the pyrolysis reaction. For this process, fast pyrolysis is being used at a temperature of 500 °C. A neutralization process is also needed due to the presence of Hydrochloric acid from the pyrolysis reaction, with the addition of sodium hydroxide. This is being carried to prevent any damage to the reactor during the process. Secondly, the steam reforming process continues after the water gas shift reaction has produced steam and carbon monoxide, followed by carbon dioxide and hydrogen formation. Lastly, pressure swing adsorption is designed to extract H2S and CO2 from the water gas shift and steam reforming reaction for greater purity of hydrogen. From the simulation study, it is observed that using various types of plastic waste procured (total input of 20,000 kg per hour of plastics) from, Brunei Darussalam, Malaysia and Indonesia, can produce about 340,000 tons of Hydrogen per year. Additionally, the annual profit of the Hydrogen production is estimated to be between $ 271,158,100 and $ 358,480,200. As per the economic analysis, it can be said that its a good to start hydrogen production plant in these regions.

3.
Sci Rep ; 14(1): 4267, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38383598

ABSTRACT

This study synthesized a highly efficient KOH-treated sunflower stem activated carbon (KOH-SSAC) using a two-step pyrolysis process and chemical activation using KOH. The resulting material exhibited exceptional properties, such as a high specific surface area (452 m2/g) and excellent adsorption capacities for phenol (333.03 mg/g) and bisphenol A (BPA) (365.81 mg/g). The adsorption process was spontaneous and exothermic, benefiting from the synergistic effects of hydrogen bonding, electrostatic attraction, and stacking interactions. Comparative analysis also showed that KOH-SSAC performed approximately twice as well as sunflower stem biochar (SSB), indicating its potential for water treatment and pollutant removal applications. The study suggests the exploration of optimization strategies to further enhance the efficiency of KOH-SSAC in large-scale scenarios. These findings contribute to the development of improved materials for efficient water treatment and pollution control.


Subject(s)
Benzhydryl Compounds , Helianthus , Water Pollutants, Chemical , Phenol/analysis , Charcoal/chemistry , Wastewater , Phenols/analysis , Thermodynamics , Adsorption , Kinetics , Water Pollutants, Chemical/analysis
5.
Sci Rep ; 13(1): 22665, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38114620

ABSTRACT

Research studies have been carried out to accentuate Fennel Seed Spent, a by-product of the Nutraceutical Industry, as an inexpensive, recyclable and operational biosorbent for bioremediation of Acid Blue 113 (AB113) in simulated water-dye samples and textile industrial effluent (TIE). The physical process of adhesion of AB113 on the surface of the biosorbent depends on various parameters, such as the initial amount of the dye, amount and expanse of the biosorbent particles, pH of the solution and temperature of the medium. The data obtained was analyzed using three two-parameter and five three-parameter adsorption isotherm models to glean the adsorbent affinities and interaction mechanism of the adsorbate molecules and adsorbent surface. The adsorption feature study is conducted employing models of Weber-Morris, pseudo 1st and 2nd order, diffusion film model, Dumwald-Wagner and Avrami model. The study through 2nd order pseudo and Avrami models produced complementary results for the authentication of experimental data. The thermodynamic features, ΔG0, ΔH0, and ΔS0 of the adsorption process are acclaimed to be almost spontaneous, physical in nature and endothermic in their manifestation. Surface characterization was carried out using Scanner Electron Microscopy, and identification and determination of chemical species and molecular structure was performed using Infrared Spectroscopy (IR). Maximum adsorption evaluated using statistical optimization with different combinations of five independent variables to study the individual as well as combined effects by Fractional Factorial Experimental Design (FFED) was 236.18 mg g-1 under optimized conditions; pH of 2, adsorbent dosage of 0.500 g L-1, and an initial dye concentration of 209.47 mg L-1 for an adsorption time of 126.62 min with orbital shaking of 165 rpm at temperature 49.95 °C.

6.
Sci Rep ; 13(1): 13833, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37620506

ABSTRACT

Discharging untreated dye-containing wastewater gives rise to environmental pollution. The present study investigated the removal efficiency and adsorption mechanism of Acid Red 18 (AR18) utilizing hexadecyl-trimethyl ammonium chloride (HDTMA.Cl) modified Nano-pumice (HMNP), which is a novel adsorbent for AR18 removal. The HDTMA.Cl is characterized by XRD, XRF, FESEM, TEM, BET and FTIR analysis. pH, contact time, initial concentration of dye and adsorbent dose were the four different parameters for investigating their effects on the adsorption process. Response surface methodology-central composite design was used to model and improve the study to reduce expenses and the number of experiments. According to the findings, at the ideal conditions (pH = 4.5, sorbent dosage = 2.375 g/l, AR18 concentration = 25 mg/l, and contact time = 70 min), the maximum removal effectiveness was 99%. The Langmuir (R2 = 0.996) and pseudo-second-order (R2 = 0.999) models were obeyed by the adsorption isotherm and kinetic, respectively. The nature of HMNP was discovered to be spontaneous, and thermodynamic investigations revealed that the AR18 adsorption process is endothermic. By tracking the adsorption capacity of the adsorbent for five cycles under ideal conditions, the reusability of HMNP was examined, which showed a reduction in HMNP's adsorption effectiveness from 99 to 85% after five consecutive recycles.

7.
Environ Res ; 234: 116440, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37356527

ABSTRACT

Oxides of vanadium, titanium and graphitic carbon nitride (g-C3N4) are well known for their catalytic activities. In order to achieve synergic catalytic effects, a novel nanocomposite (NC) i.e. V2O5/TiO2/g-C3N4 has been synthesized by a very simple, ecofriendly and nonhazardous hydrothermal method. The fabricated NC was characterized employing UV-Visible, FTIR, SEM, and XRD techniques. UV-Visible and FTIR analysis indicated the formation of the nanocomposite and XRD analysis confirmed the association of V2O5 and TiO2 with g-C3N4 in nanocomposite. SEM study indicated the hetero-structure of NC having size ranging from 50 to 80 nm and it was found having hexagonal crystallite structure. The synthesized nanocomposite exhibited excellent scavenging of free radicals DPPH● (91%) and ABTS●+ (64%) that are responsible for the oxidation of biomolecules. Therefore, NC can be claimed having biomolecule oxidation protective potential. In addition, photocatalytic ability for the degradation of methylene blue (MB) and methyl orange (MO) was also achieved up to 94% and 89% respectively. The synthesized novel nanocomposite exhibited excellent potential to remove free radicals and dyes from aqueous medium which can be further used for the environmental remediation.


Subject(s)
Light , Nanocomposites , Coloring Agents , Nanocomposites/chemistry , Catalysis
8.
Heliyon ; 9(5): e15575, 2023 May.
Article in English | MEDLINE | ID: mdl-37153391

ABSTRACT

The presence of heavy metal, chromium (VI), in water environments leads to various diseases in humans, such as cancer, lung tumors, and allergies. This review comparatively examines the use of several adsorbents, such as biosorbents, activated carbon, nanocomposites, and polyaniline (PANI), in terms of the operational parameters (initial chromium (VI) concentration (Co), temperature (T), pH, contact time (t), and adsorbent dosage) to achieve the Langmuir's maximum adsorption capacity (qm) for chromium (VI) adsorption. The study finds that the use of biosorbents (fruit bio-composite, fungus, leave, and oak bark char), activated carbons (HCl-treated dry fruit waste, polyethyleneimine (PEI) and potassium hydroxide (KOH) PEI-KOH alkali-treated rice waste-derived biochar, and KOH/hydrochloric acid (HCl) acid/base-treated commercial), iron-based nanocomposites, magnetic manganese-multiwalled carbon nanotubes nanocomposites, copper-based nanocomposites, graphene oxide functionalized amino acid, and PANI functionalized transition metal are effective in achieving high Langmuir's maximum adsorption capacity (qm) for chromium (VI) adsorption, and that operational parameters such as initial concentration, temperature, pH, contact time, and adsorbent dosage significantly affect the Langmuir's maximum adsorption capacity (qm). Magnetic graphene oxide functionalized amino acid showed the highest experimental and pseudo-second-order kinetic model equilibrium adsorption capacities. The iron oxide functionalized calcium carbonate (IO@CaCO3) nanocomposites showed the highest heterogeneous adsorption capacity. Additionally, Syzygium cumini bark biosorbent is highly effective in treating tannery industrial wastewater with high levels of chromium (VI).

9.
Sci Rep ; 13(1): 7831, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37188708

ABSTRACT

4-Chlorophenol pollution is a significant environmental concern. In this study, powdered activated carbon modified with amine groups is synthesized and investigated its efficiency in removing 4-chlorophenols from aqueous environments. Response surface methodology (RSM) and central composite design (CCD) were used to investigate the effect of different parameters, including pH, contact time, adsorbent dosage, and initial 4-chlorophenol concentration, on 4-chlorophenol removal efficiency. The RSM-CCD approach was implemented in R software to design and analyze the experiments. The statistical analysis of variance (ANOVA) was used to describe the roles of effecting parameters on response. Isotherm and kinetic studies were done with three Langmuir, Freundlich, and Temkin isotherm models and four pseudo-first-order, pseudo-second-order, Elovich, and intraparticle kinetic models in both linear and non-linear forms. The synthesized adsorbent was characterized using X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) analyses. The results showed that the synthesized modified activated carbon had a maximum adsorption capacity of 316.1 mg/g and exhibited high efficiency in removing 4-chlorophenols. The optimal conditions for the highest removal efficiency were an adsorbent dosage of 0.55 g/L, contact time of 35 min, initial concentration of 4-chlorophenol of 110 mg/L, and pH of 3. The thermodynamic study indicated that the adsorption process was exothermic and spontaneous. The synthesized adsorbent also showed excellent reusability even after five successive cycles. These findings demonstrate the potential of modified activated carbon as an effective method for removing 4-chlorophenols from aqueous environments and contributing to developing sustainable and efficient water treatment technologies.

10.
Environ Res ; 231(Pt 2): 116147, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37187307

ABSTRACT

Both the environment and human health have suffered as a result of excessive and irrational pesticide use. The human body is vulnerable to a wide range of illnesses brought on by prolonged exposure to or intake of food contaminated with pesticide residues, including immunological and hormonal abnormalities and the development of certain tumors. Sensors based on nanoparticles stand out from more conventional spectrophotometry analytical methods due to their low detection limits, high sensitivity, and ease of use; that is why the demand for simple, fast, and less expensive sensing methods increases daily and presents myriad uses. Such demands are fulfilled by employing paper-based analytical devices having intrinsic properties. The presented work reports an on-site, easy-to-handle, and disposable paper-based sensing device for performing fast screening along with readout from a smartphone. The fabricated device utilizes luminescent silica quantum dots, immobilized into a paper cellulose matrix, and the resonance energy transfer phenomenon is employed. The silica quantum dots probes were fabricated from citric acid and, by undergoing physical adsorption, were confined on the nitrocellulose substrate in small wax-traced spots. The silica quantum dots were excited by smartphone ultraviolet LED, acting as an energy source and for capturing the image. The obtained LOD is 0.054 µM, and the coefficient of variation is less than 6.1%, comparable to the result obtained by UV-Visible and fluorometric analysis under similar experimental conditions. In addition, high reproducibility (≥9.8%) and high recovery ≥90% were obtained in spiked blood samples. The fabricated sensor sensitively detected pesticides giving a LOD of 2.5 ppm along with the development of yellow color within a short period of 5 min. The sensor functions well when sophisticated instrumentation is not accessible. The presented work shows the potential of the paper strip for the on-site detection of pesticides in biological and environmental samples.


Subject(s)
Pesticides , Quantum Dots , Humans , Pesticides/analysis , Quantum Dots/chemistry , Silicon Dioxide/chemistry , Reproducibility of Results , Luminescence
11.
Sci Rep ; 13(1): 7398, 2023 May 06.
Article in English | MEDLINE | ID: mdl-37149723

ABSTRACT

A limited experimental work was on multi-walled carbon nanotube (MWCNT)-water nanofluid with surfactant in the solar parabolic collector at low volume concentrations. At high-volume concentrated nanofluid, the pressure drop was more due to an increase in the viscosity of the working fluid and an increase in the nanoparticle cost; hence it is not economical. This report attempted to use Sodium Dodecyl Benzene Sulfonate (SDBS) surfactant in the low-volume concentrated MWCNT-water nanofluid to establish effective heat transfer in solar parabolic collector applications. The stable MWCNT-water nanofluid was prepared at 0.0158, 0.0238, and 0.0317 volume concentrations. The experiments were conducted from 10:00 to 16:00 at 6, 6.5 and 7 L/min flow rates concerning ASHRAE Standards. At the 7 L/min flow rate of the working fluid, having a minimum temperature difference between the working fluid and absorber tube leads to better heat transfer. The increased volume concentration of MWCNT in the water enhances the surface area interaction between water and MWCNT nanoparticles. This results in maximum solar parabolic collector efficiency at 0.0317 vol% with a 7 L/min flow rate and 10-11% higher than the distilled water.

12.
Ultrason Sonochem ; 94: 106302, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36736130

ABSTRACT

Water is one of the major sources that spread human diseases through contamination with bacteria and other pathogenic microorganisms. This review focuses on microbial hazards as they are often present in water and wastewater and cause various human diseases. Among the currently used disinfection methods, sonochemical reactors (SCRs) that produce free radicals combined with advanced oxidation processes (AOPs) have received significant attention from the scientific community. Also, this review discussed various types of cavitation reactors, such as acoustic cavitation reactors (ACRs) utilizing ultrasonic energy (UE), which had been widely employed, involving AOPs for treating contaminated waters. Besides ACRs, hydrodynamic cavitation reactors (HCRs) also effectively destroy and deactivate microorganisms to varying degrees. Cavitation is the fundamental phenomenon responsible for initiating many sonochemical reactions in liquids. Bacterial degradation occurs mainly due to the thinning of microbial membranes, local warming, and the generation of free radicals due to cavitation. Over the years, although extensive investigations have focused on the antimicrobial effects of UE (ultrasonic energy), the primary mechanism underlying the cavitation effects in the disinfection process, inactivation of microbes, and chemical reactions involved are still poorly understood. Therefore, studies under different conditions often lead to inconsistent results. This review investigates and compares other mechanisms and performances from greener and environmentally friendly sonochemical techniques to the remediation of microbial hazards associated with water and wastewater. Finally, the energy aspects, challenges, and recommendations for future perspectives have been provided.


Subject(s)
Water Pollutants, Chemical , Water Purification , Humans , Wastewater , Water Purification/methods , Water , Oxidation-Reduction , Disinfection , Water Pollutants, Chemical/analysis
13.
Environ Res ; 222: 115337, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36682442

ABSTRACT

MXene is a magical class of 2D nanomaterials and emerging in many applications in diverse fields. Due to the multiple advantageous characteristics of its fundamental components, such as structural, physicochemical, optical, and occasionally even biological characteristics. However, it is limited in the biomedical industry due to poor physiological stability, decomposition rate, and lack of controlled and sustained drug release. These limitations can be overcome when MXene forms composites with other 2D materials. The efficiency of pure MXene in biomedicine is inferior to that of MXene-based composites. The availability of functionality on the exterior part of MXene has a key role in the modification of their surface and their characteristics. This review provides an extensive discussion on the synthesizing of MXene and the role of the surface functionalities on the efficiency of MXene. In addition, a detailed discussion of the biomedical applications of MXene, including antibacterial activity, regenerative medicine, CT scan capability, drug delivery, diagnostics, MRI and biosensing capability. Furthermore, an outline of the future problems and challenges of MXene-based materials for biomedical applications was narrated. Thus, these salient features showcase the potential of MXene-based material and will be a breakthrough in biomedical applications in the near future.


Subject(s)
Anti-Bacterial Agents , Nanostructures , Drug Delivery Systems , Industry
14.
Environ Res ; 220: 115169, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36587722

ABSTRACT

To date, the development of renewable fuels has become a normal phenomenon to solve the problem of diesel fuel emissions and the scarcity of fossil fuels. Biodiesel production has some limitations, such as two-step processes requiring high free fatty acids (FFAs), oil feedstocks and gum formation. Hydrotreated vegetable oil (HVO) is a newly developed international renewable diesel that uses renewable feedstocks via the hydrotreatment process. Unlike FAME, FFAs percentage doesn't affect the HVO production and sustains a higher yield. The improved characteristics of HVO, such as a higher cetane value, better cold flow properties, lower emissions and excellent oxidation stability for storage, stand out from FAME biodiesel. Moreover, HVO is a hydrocarbon without oxygen content, but FAME is an ester with 11% oxygen content which makes it differ in oxidation stability. Waste sludge palm oil (SPO), an abundant non-edible industrial waste, was reused and selected as the feedstock for HVO production. Techno-economical and energy analyses were conducted for HVO production using Aspen HYSYS with a plant capacity of 25,000 kg/h. Alternatively, hydrogen has been recycled to reduce the hydrogen feed. With a capital investment of RM 65.86 million and an annual production cost of RM 332.56 million, the base case of the SPO-HVO production process was more desirable after consideration of all economic indicators and HVO purity. The base case of SPO-HVO production could achieve a return on investment (ROI) of 89.03% with a payback period (PBP) of 1.68 years. The SPO-HVO production in this study has observed a reduction in the primary greenhouse gas, carbon dioxide (CO2) emission by up to 90% and the total annual production cost by nearly RM 450 million. Therefore, SPO-HVO production is a potential and alternative process to produce biobased diesel fuels with waste oil.


Subject(s)
Plant Oils , Sewage , Palm Oil , Vehicle Emissions , Biofuels/analysis , Gasoline/analysis , Hydrogen , Oxygen
15.
Environ Res ; 222: 115279, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36706895

ABSTRACT

Over the last few years, electroanalysis has made significant advancements, particularly in developing electrochemical sensors. Electrochemical sensors generally include emerging Photoelectrochemical and Electrochemiluminescence sensors, which combine optical techniques and traditional electrochemical bio/non-biosensors. Numerous EC-detecting methods have also been designed for commercial applications to detect biological and non-biological markers for various diseases. Analytical applications have recently focused significantly on one of the novel nanomaterials, the MXene. This material is being extensively investigated for applications in electrochemical sensors due to its unique mechanical, electronic, optical, active functional groups and thermal characteristics. This study extensively discusses the salient features of MXene-based electrochemical sensors, photoelectrochemical sensors, enzyme-based biosensors, immunosensors, aptasensors, electrochemiluminescence sensors, and electrochemical non-biosensors. In addition, their performance in detecting various substances and contaminants is thoroughly discussed. Furthermore, the challenges and prospects the MXene-based electrochemical sensors are elaborated.


Subject(s)
Biosensing Techniques , Nanostructures , Biosensing Techniques/methods , Electrochemical Techniques/methods , Immunoassay , Nanostructures/chemistry
16.
Environ Res ; 219: 115089, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36529332

ABSTRACT

In the present work, the synthesis of cellulose nanowhiskers (CNW)/chitosan nanocomposite films via deep eutectic solvents (DES) changing the chemical structures were carried out. It was observed that a pure chitosan film has broadband at 3180-3400 cm-1, indicating amide and hydroxyl groups. Upon CNW incorporation, the peak gets sharper and stronger and shifts to a greater wavelength. Further, the addition of DES infuses more elements of amide into the nanocomposite films. Moreover, the mechanical properties incorporating CNW filler into a chitosan matrix show an enhancement in tensile strength (TS), Young's modulus (YM), and elongation at break. The TS and YM increase while the elongation decrease as the CNW concentration increases. The YM of biocomposite films is increased to 723 MPa at 25% CNW into chitosan films. Besides, the TS has enhanced to 11.48 MPa at 15% CNW concentration in the biocomposite films. The elongation at break has decreased to 11.7% at 25% CNW concentration. Hence, incorporating CNW into the chitosan matrix via DES can still improve the mechanical properties of the nanocomposite films. Therefore, the application of DES results in a lower YM and TS as the films are hygroscopic. In conclusion, DES can be considered the new green solvent media for synthesizing materials. It has the potential to replace ionic liquids due to its biodegradability and non-toxic properties while preserving the character of low-vapour pressure. Besides that, chitosan can be used as potential material for applications in process industries, such as the biomedical and pharmaceutical industries. Thus, DES can be used as a green solvent and aim to reduce the toxic effect of chemicals on the environment during chemical production.


Subject(s)
Chitosan , Nanocomposites , Cellulose/chemistry , Chitosan/chemistry , Deep Eutectic Solvents , Solvents , Nanocomposites/chemistry
17.
Chemosphere ; 313: 137497, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36493892

ABSTRACT

Multiple ecological contaminants in gaseous, liquid, and solid forms are vented into ecosystems due to the huge growth of industrialization, which is today at the forefront of worldwide attention. High-efficiency removal of these environmental pollutants is a must because of the potential harm to public health and biodiversity. The alarming concern has led to the synthesis of improved nanomaterials for removing pollutants. A path to innovative methods for identifying and preventing several obnoxious, hazardous contaminants from entering the environment is grabbing attention. Various applications in diverse industries are seen as a potential directions for researchers. MXene is a new, excellent, and advanced material that has received greater importance related to the environmental application. Due to its unique physicochemical and mechanical properties, high specific surface area, physiological compatibility, strong electrodynamics, and raised specific surface area wettability, its applications are growing. This review paper examines the most recent methods and trends for environmental pollutant removal using advanced 2D Mxene materials. In addition, the history and the development of MXene synthesis were elaborated. Furthermore, an extreme summary of various environmental pollutants removal has been discussed, and the future challenges along with their future perspectives have been illustrated.


Subject(s)
Environmental Pollutants , Environmental Restoration and Remediation , Ecosystem , Biodiversity
18.
Chemosphere ; 314: 137643, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36581116

ABSTRACT

MXenes are an innovative class of 2D nanostructured materials gaining popularity for various uses in medicine, chemistry, and the environment. A larger outer layer area, exceptional stability and conductivity of heat, high porosity, and environmental friendliness are all characteristics of MXenes and their composites. As a result, MXenes have been used to produce Li-ion batteries, semiconductors, water desalination membranes, and hydrogen storage. MXenes have recently been used in many environmental remediations, frequently surpassing conventional materials, to treat groundwater contamination, surface waters, industrial and municipal wastewaters, and desalination. Due to their outstanding structural characteristics and the enormous specific surface area, they are widely utilized as adsorbents or membrane materials for the desalination of seawater. When used for electrochemical applications, MXene-composites can deionize via Faradaic capacitive deionization (CDI) and adsorb various organic and inorganic pollutants to treat the water. In general, as compared to other 2D nanomaterials, MXene has superb characteristics; because of their magnificent characteristics and they exhibit strong desalination capability. The current review paper discusses the desalination capability of MXenes and their composites. Focusing on the desalination capacity of MXene-based nanomaterials, this study discusses the characteristics and synthesis techniques of MXenes their composites along with their ion-rejection capability and pervaporation desalination of water via MXene-based membranes, capacitive deionization capability, solar desalination capability. Furthermore, the challenges and prospects of MXenes and their composites are highlighted.


Subject(s)
Seawater , Water , Drug Contamination , Electric Conductivity
20.
Chemosphere ; 311(Pt 2): 137056, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36332734

ABSTRACT

Water consumption has grown in recent years due to rising urbanization and industry. As a result, global water stocks are steadily depleting. As a result, it is critical to seek strategies for removing harmful elements from wastewater once it has been cleaned. In recent years, many studies have been conducted to develop new materials and innovative pathways for water purification and environmental remediation. Due to low energy consumption, low operating cost, and integrated facilities, membrane separation has gained significant attention as a potential technique for water treatment. In these directions, MXene which is the advanced 2D material has been explored and many applications were reported. However, research on MXene-based membranes is still in its early stages and reported applications are scatter. This review provides a broad overview of MXenes and their perspectives, including their synthesis, surface chemistry, interlayer tuning, membrane construction, and uses for water purification. Application of MXene based membrane for extracting pollutants such as heavy metals, organic contaminants, and radionuclides from the aqueous water bodies were briefly discussed. Furthermore, the performance of MXene-based separation membranes is compared to that of other nano-based membranes, and outcomes are very promising. In order to shed more light on the advancement of MXene-based membranes and their operational separation applications, significant advances in the fabrication of MXene-based membranes is also encapsulated. Finally, future prospects of MXene-based materials for diverse applications were discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...