Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Bioinformatics ; 9: 93, 2008 Feb 11.
Article in English | MEDLINE | ID: mdl-18267014

ABSTRACT

BACKGROUND: Array-based comparative genome hybridization (aCGH) is commonly used to determine the genomic content of bacterial strains. Since prokaryotes in general have less conserved genome sequences than eukaryotes, sequence divergences between the genes in the genomes used for an aCGH experiment obstruct determination of genome variations (e.g. deletions). Current normalization methods do not take into consideration sequence divergence between target and microarray features and therefore cannot distinguish a difference in signal due to systematic errors in the data or due to sequence divergence. RESULTS: We present supervised Lowess, or S-Lowess, an application of the subset Lowess normalization method. By using a predicted subset of array features with minimal sequence divergence between the analyzed strains for the normalization procedure we remove systematic errors from dual-dye aCGH data in two steps: (1) determination of a subset of conserved genes (i.e. likely conserved genes, LCG); and (2) using the LCG for subset Lowess normalization. Subset Lowess determines the correction factors for systematic errors in the subset of array features and normalizes all array features using these correction factors. The performance of S-Lowess was assessed on aCGH experiments in which differentially labeled genomic DNA fragments of Lactococcus lactis IL1403 and L. lactis MG1363 strains were hybridized to IL1403 DNA microarrays. Since both genomes are sequenced and gene deletions identified, the success rate of different aCGH normalization methods in detecting these deletions in the MG1363 genome were determined. S-Lowess detects 97% of the deletions, whereas other aCGH normalization methods detect up to only 60% of the deletions. CONCLUSION: S-Lowess is implemented in a user-friendly web-tool accessible from http://bioinformatics.biol.rug.nl/websoftware/s-lowess. We demonstrate that it outperforms existing normalization methods and maximizes detection of genomic variation (e.g. deletions) from microbial aCGH data.


Subject(s)
Chromosome Mapping/methods , Genome, Bacterial/genetics , In Situ Hybridization/methods , Lactococcus/genetics , Oligonucleotide Array Sequence Analysis/methods , Sequence Analysis, DNA/methods , Databases, Genetic , Genetic Variation/genetics , Reproducibility of Results , Sensitivity and Specificity
2.
BMC Genomics ; 6: 77, 2005 May 20.
Article in English | MEDLINE | ID: mdl-15907200

ABSTRACT

BACKGROUND: In research laboratories using DNA-microarrays, usually a number of researchers perform experiments, each generating possible sources of error. There is a need for a quick and robust method to assess data quality and sources of errors in DNA-microarray experiments. To this end, a novel and cost-effective validation scheme was devised, implemented, and employed. RESULTS: A number of validation experiments were performed on Lactococcus lactis IL1403 amplicon-based DNA-microarrays. Using the validation scheme and ANOVA, the factors contributing to the variance in normalized DNA-microarray data were estimated. Day-to-day as well as experimenter-dependent variances were shown to contribute strongly to the variance, while dye and culturing had a relatively modest contribution to the variance. CONCLUSION: Even in cases where 90% of the data were kept for analysis and the experiments were performed under challenging conditions (e.g. on different days), the CV was at an acceptable 25%. Clustering experiments showed that trends can be reliably detected also from genes with very low expression levels. The validation scheme thus allows determining conditions that could be improved to yield even higher DNA-microarray data quality.


Subject(s)
Computational Biology/methods , Genomics/methods , Oligonucleotide Array Sequence Analysis/methods , Analysis of Variance , Bacillus subtilis/genetics , Cluster Analysis , Gene Expression Profiling/methods , Lactococcus lactis/genetics , Models, Statistical , Quality Control , Reproducibility of Results , Research Design
3.
Antonie Van Leeuwenhoek ; 82(1-4): 113-22, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12369183

ABSTRACT

Several complete genome sequences of Lactococcus lactis and their annotations will become available in the near future, next to the already published genome sequence of L. lactis ssp. lactis IL 1403. This will allow intraspecies comparative genomics studies as well as functional genomics studies aimed at a better understanding of physiological processes and regulatory networks operating in lactococci. This paper describes the initial set-up of a DNA-microarray facility in our group, to enable transcriptome analysis of various Gram-positive bacteria, including a ssp. lactis and a ssp. cremoris strain of Lactococcus lactis. Moreover a global description will be given of the hardware and software requirements for such a set-up, highlighting the crucial integration of relevant bioinformatics tools and methods. This includes the development of MolGenIS, an information system for transcriptome data storage and retrieval, and LactococCye, a metabolic pathway/genome database of Lactococcus lactis.


Subject(s)
Databases, Nucleic Acid , Lactococcus lactis/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...