Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 62(34): 13757-13764, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37578992

ABSTRACT

3D-[Zn4O(1,4-BDC)3•x(solvent)]n (MOF-5; BDC = 1,4-benzodicarboxylate) and 3D-[Zn2(BTTB)(DMF)2•(H2O)3]n (MOF-D; BTTB = 4,4',4″,4‴-benzene-1,2,4,5-tetrayltetrabenzoate) have been investigated by means of steady-state UV-visible and fluorescence and time-resolved emission spectroscopy, as a function of solvent and power of the excitation irradiation. The low-temperature X-ray structures (173 K) were permitted to locate solvent molecules (here H2O) in the lattice. They were found distributed in the middle in the voids with no evidence of specific interactions (H-bond, coulombic, and dipole-dipole) with the framework. The fluorescence decays of the ligands (ππ* excited state), τF, for the host-guest composites MOF-5@solvent and MOF-D@solvent (solvent = air, MeCN, EtCN, MeOH, EtOH, and DMF) were found bi-exponential (short τF1 (ps), and long τF2 (ns)) with one important feature: upon cooling from 298 to 77 K, MOF-5's τF1 decreases and τF2 increases, while the opposite trend is generally observed in MOF-D. The low values for τF1 (ps) in MOF-5 are associated with the augmented probability of solvent-ligand collisions leading to nonradiative deactivation, which upon cooling to 77 K increases further as the scaffolding contracts. The augmentation in τF2 is readily associated with the increased rigidity of the ligands that are not submitted to this effect (at the surface of the MOF and as pendent groups). For the low emitter MOF-D, the reversed situation is noted but not as clearly due to the uncertainties in the data. Upon increasing the excitation flux, the fluorescence intensity increases linearly with the laser power indicating the absence of singlet-singlet annihilation, inferring the absence of efficient exciton migration. This observation is explained by the small absorptivity coefficients, which leads to a small J spectral overlap between absorption and fluorescence according to the Forster and Dexter theories, and consequently, a small rate for energy migration. This conclusion drastically changes the perception of the photocatalytic mechanism of MOF-5 and other MOFs exhibiting similar absorption features (i.e., no antenna effect).

2.
Inorg Chem ; 60(17): 13528-13538, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34424679

ABSTRACT

The design of new and inexpensive metal-containing functional materials is of great interest. Herein is reported a unique thermochromic near-IR emitting coordination polymer, 3D-[Cu8I8(L1)2]n, CP2, which is formed when ArS(CH2)4SAr (L1, Ar = 4-C6H4OMe) reacts with 2 equiv of CuI in EtCN. In MeCN, CP1 ([Cu4I4(L1)(MeCN)2]n, consisting of an alternating [-Cu4I4-L1-Cu4I4-L1-]n chain where the Cu4I4 cubane units bear two metal-bound MeCN molecules, is formed. Heat-driven elimination of these MeCN's in solid CP1 also leads to CP2 through a predisposed organization of the Cu4I4 units prone to fusion after MeCN eliminations (i.e., a rare case of template effect). The CP2 structure exhibits parallel 1D-(Cu8I8)n chains, (z-axis; designated 1D-[CuI]n) as secondary building units (SBU) held together by parallel thioether ligands (x,y-axes), forming a nonporous 3D network. The structure of this 1D-[CuI]n SBU is unprecedented and consists of a series of fused and twisted open Cu4I4 cubanes forming a fused poly(truncated rhombic dodecahedron). Unexpectedly, the compact 3D CP2 exhibits a solid-to-solid phase transition at 100 °C and a hysteresis of ∼20 °C. CP1 emits intensively (298 K: λemi = 564 nm; Φe = 0.35), whereas CP2 presents a strongly red-shifted weaker emission (298 K: λemi ∼ 740 nm, Φe < 0.0001). Moreover, CP2, which is stable over long periods of time, exhibits thermochromism where the emission intensity of the near-IR band decreases significantly at the benefit of a ligand-centered phosphorescence at 415 nm. Altogether, these properties listed above make CP2 exceptional. The low-energy singlet and triplet excited states have been assigned to ligand/metal-to-ligand charge transfer based on DFT and TD-DFT computations.

3.
J Phys Chem B ; 125(33): 9579-9587, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34402620

ABSTRACT

Molecular self-assembly through noncovalent interactions is a particularly efficient approach to fine-tune the optoelectronic and photophysical properties of electroactive materials. In metal-ligand coordination polymers, the final properties of the assemblies are directly related to the nature of the metal-ligand interaction. To probe for such influence on the photophysical properties of electroactive materials, a series of coordination polymers based on a well-known organic dye, diketopyrrolopyrrole, was prepared through coordination of a terpyridine-containing monomer with various metal sources, including iron, cobalt, zinc, and manganese. The resulting supramolecular polymers were characterized through multiple techniques, including UV-vis and fluorescence spectroscopy, time-correlated single-photon counting, and femtosecond transient absorption spectroscopy to reveal the impact of the metal source on the final photophysical properties of coordination polymers. As expected, important variations were found between different coordination polymers in terms of absorption, fluorescence kinetics, and electron transfer rate. While iron and cobalt-containing polymers showed ultrafast electrons transfer rates, assemblies from manganese were shown to be much less efficient, confirming the importance of metal centers. This detailed fundamental study unravels some important relationships between metal-ligand interactions, supramolecular self-assembly, and photophysical properties, ultimately leading to new avenues for the design of functional polymers based on organic dyes.


Subject(s)
Electrons , Polymers , Ketones , Metals , Pyrroles , Zinc
4.
Dalton Trans ; 50(8): 2945-2963, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33564810

ABSTRACT

The reaction of [Re(CO)3(THF)(µ-Br)]2 or [Re(CO)5X] (X = Cl, Br, I) with the diaryl-2-azabutadienes [(RS)2C[double bond, length as m-dash]C(H)-N[double bond, length as m-dash]CAr2] containing two thioether arms at the 4,4-position forms the luminescent S,N-chelate complexes fac-[(OC)3ReX{(RS)2C[double bond, length as m-dash]C(H)-N[double bond, length as m-dash]CAr2}] (1a-h). The halide abstraction by silver triflate converts [(OC)3ReCl{(PhS)2C[double bond, length as m-dash]C(H)-N[double bond, length as m-dash]CPh2}] (1c) to [(OC)3Re(OS([double bond, length as m-dash]O)2CF3){(PhS)2C[double bond, length as m-dash]C(H)-N[double bond, length as m-dash]CPh2}] (1j) bearing a covalently bound triflate ligand. The cyclic voltammograms reveal reversible S^N ligand-centred reduction and irreversible oxidation waves for all complexes. The crystal structures of nine octahedral complexes have been determined along with that of (NaphtylS)2C[double bond, length as m-dash]C(H)-N[double bond, length as m-dash]CPh2 (L6). A rich system of weak non-covalent intermolecular secondary interactions through CHX(Cl, Br)Re, CHO, COπ(Ph), CHπCO, CHO and CHS contacts has been evidenced. The photophysical properties have been investigated by steady-state and time-resolved absorption (fs transient absorption, fs-TAS) and emission (ns-TCSPC and ps-Streak camera) spectroscopy in 2-MeTHF solution at 298 and 77 K. The emission bands are composed of either singlet (450 < λmax < 535 nm) and/or triplet emissions (at 77 K only, λmax < 640 nm, or appearing as a tail at λ > 600 nm), which decay in a multiexponential manner for the fluorescence (short ps (i.e.

5.
Phys Chem Chem Phys ; 21(30): 16538-16548, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31313776

ABSTRACT

A new coordination polymer (CP) defined as [Cu2Cl2(EtS(CH2)4SEt)4]n (CP2) was prepared by reacting EtS(CH2)4SEt with CuCl in acetonitrile in a 1 : 2 stoichiometric ratio. The X-ray structure reveals formation of non-porous 3D material composed of parallel 2D-[Cu2Cl2S2]n layers of Cl-bridged Cu2(µ-Cl)2 rhomboids assembled by EtS(CH2)4SEt ligands. A weak triplet emission (Φe < 0.0001) is observed in the 400-500 nm range with τe of 0.93 (298 K) and 3.5 ns (77 K) as major components. CP2 is the only 2nd example of emissive thioether/CuCl-containing material and combined DFT/TDDFT computations suggest the presence of lowest energy M/XLCT excited states. Upon increasing the photon flux (i.e. laser power), a triplet-triplet annihilation (TTA) is induced with quenching time constants of 72 ps (kQ = 1.3 × 1010 s-1) and 1.0 ns (kQ = 7.1 × 108 s-1) at 298 and 77 K, respectively, proceeding through an excitation energy migration operating via a Dexter process. Two distinct (Io)1/2 (Io = laser power) dependences of the emission intensity are depicted, indicating saturation as the observed emission increases with the excitation flux. These findings differ from that previously reported isomorphous CP [Cu2Br2(µ-EtS(CH2)4SEt)4]n (CP1), which exhibits no TTA behaviour at 77 K, and only one (laser power)2 dependence at 298 K. The ∼18-fold increase in kQ upon warming CP2 from 77 to 298 K indicates a temperature-aided TTA process. The significant difference between the presence (slower, CP2) and absence (CP1) of TTA at 77 K is explained by the larger unit cell contraction of the former upon cooling. This is noticeable by the larger change in inter-rhomboid CuCu separation for CP2.

6.
ACS Omega ; 4(27): 22591-22600, 2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31909343

ABSTRACT

A nanoprecipitation procedure was utilized to prepare novel diketopyrrolopyrrole-based semiconducting polymer nanoparticles (SPNs) with hyaluronic acid (HA) and polysorbate 80. The nanoprecipitation led to the formation of spherical nanoparticles with average diameters ranging from 100 to 200 nm, and a careful control over the structure of the parent conjugated polymers was performed to probe the influence of π-conjugation on the final photophysical and thermal stability of the resulting SPNs. Upon generation of a series of novel SPNs, the optical and photophysical properties of the new nanomaterials were probed in solution using various techniques including transmission electron microscopy, dynamic light scattering, small-angle neutron scattering, transient absorption, and UV-vis spectroscopy. A careful comparison was performed between the different SPNs to evaluate their excited-state dynamics and photophysical properties, both before and after nanoprecipitation. Interestingly, although soluble in organic solution, the nanoparticles were found to exhibit aggregative behavior, resulting in SPNs that exhibit excited-state behaviors that are very similar to aggregated polymer solutions. Based on these findings, the formation of HA- and polysorbate 80-based nanoparticles does not influence the photophysical properties of the conjugated polymers, thus opening new opportunities for the design of bioimaging agents and nanomaterials for health-related applications.

7.
Phys Chem Chem Phys ; 20(20): 13682-13692, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29745390

ABSTRACT

Two dyads built with a co-facial slipped bis(zinc(ii)porphyrin), a free base and a bridge, [Zn2]-bridge-[Fb] (bridge = C6H4C[triple bond, length as m-dash]C, 1 and C6H4C[triple bond, length as m-dash]CC6H4, 2), exhibit S1 energy equilibrium [Zn2]* ↔ [Fb]* at 298 K, an extremely rare situation, which depends on the degree of MO coupling between the units. At 77 K, 2 becomes bi-directional due to the two large C6H4-[Zn2] and C6H4-[Fb] dihedral angles.

8.
Inorg Chem ; 57(8): 4291-4300, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29570293

ABSTRACT

π-Stacking is the most common structural feature that dictates the optical and electronic properties of chromophores in the solid state. Herein, a unidirectional singlet-singlet energy-transfer dyad has been designed to test the effect of π-stacking of zinc(II) porphyrin, [Zn2], as a slipped dimer acceptor using a BODIPY unit, [bod], as the donor, bridged by the linker C6H4C≡CC6H4. The rate of singlet energy transfer, kET(S1), at 298 K ( kET(S1) = 4.5 × 1010 s-1) extracted through the change in fluorescence lifetime, τF, of [bod] in the presence (27.1 ps) and the absence of [Zn2] (4.61 ns) from Streak camera measurements, and the rise time of the acceptor signal in femtosecond transient absorption spectra (22.0 ps), is faster than most literature cases where no π-stacking effect exists (i.e., monoporphyrin units). At 77 K, the τF of [bod] increases to 45.3 ps, indicating that kET(S1) decreases by 2-fold (2.2 × 1010 s-1), a value similar to most values reported in the literature, thus suggesting that the higher value at 298 K is thermally promoted at a higher temperature.

9.
Chemphyschem ; 19(5): 596-611, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29205732

ABSTRACT

The notoriously non-luminescent uncycled azophenine (Q) was harnessed with Bodipy and zinc(II)porphyrin antennas to probe its fluorescence properties, its ability to act as a singlet excited state energy acceptor and to mediate the transfer. Two near-IR emissions are depicted from time-resolved fluorescence spectroscopy, which are most likely due to the presence of tautomers of very similar calculated total energies (350 cm-1 ; DFT; B3LYP). The rates for energy transfer, kET (S1 ), for 1 Bodipy*→Q are in the order of 1010 -1011  s-1 and are surprisingly fast when considering the low absorptivity properties of the lowest energy charge transfer excited state of azophenine. The rational is provided by the calculated frontier molecular orbitals (MOs) which show atomic contributions in the C6 H4 C≡CC6 H4 arms, thus favoring the double electron exchange mechanism. In the mixed-antenna Bodipy-porphyrin star molecule, the rate for 1 Bodipy*→porphyrin has also been evaluated (≈16×1010  s-1 ) and is among the fastest rates reported for Bodipy-zinc(II)porphyrin pairs. This astonishing result is again explained from the atomic contributions of the C6 H4 C≡CC6 H4 and C≡CC6 H4 arms thus favouring the Dexter process. Here, for the first time, this process is found to be sensitively temperature-dependent. The azophenine turns out to be excellent for electronic communication.

10.
Inorg Chem ; 56(21): 13140-13151, 2017 Nov 06.
Article in English | MEDLINE | ID: mdl-29022705

ABSTRACT

Azophenine, (α-C6H5NH)2(C6H5-N═C6H2═N-C6H5), well known to be non-emissive, was rigidified by replacing two amine protons by two difluoroboranes (BF2+) and further functionalized at the para-positions of the phenyl groups by luminescent trans-ArC≡C-Pt(PR3)2-C≡C ([Pt]) arms [Ar = C6H4 (R = Et), hexa(n-hexyl)truxene) (Tru; R = Bu)]. Two effects are reported. First, the linking of these [Pt] arms with the central azophenine (C6H4-N═C6H2(NH)2═N-C6H4; Q) generates very low energy charge-transfer (CT) singlet and triplet excited states (3,1([Pt]-to-Q)*) with absorption bands extending all the way to 800 nm. Second, the rigidification of azophenine by the incorporation of BF2+ units renders the low-lying CT singlet state clearly emissive at 298 and 77 K in the near-IR region. DFT computations place the triplet emission in the 1200-1400 nm range, but no phosphorescence was detected. The photophysical properties are investigated, and circumstantial evidence for slow triplet energy transfers, 3Tru* → Q, is provided.

11.
Phys Chem Chem Phys ; 19(35): 24018-24028, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28832037

ABSTRACT

Two linear polyads were designed using zinc(ii)porphyrin, [ZnP], and N-methyl-2-phenyl-3,4-fullero-pyrrolidine (C60) where C60 is dangling either at the terminal position of [ZnP]-C6H4-[triple bond, length as m-dash]-C6H4-[ZnP]-C60 (1) or at the central position of [ZnP]-C6H4-[triple bond, length as m-dash]-C6H4-[ZnP(C60)]-C6H4-[triple bond, length as m-dash]-C6H4-[ZnP] (2) in order to test whether the fact of having one or two side electron donors influences the rate of electron transfer, ket. These polyads were studied using cyclic voltammograms, DFT computations, steady state and time-resolved fluorescence spectroscopy, and femtosecond transient absorption spectroscopy (fs-TAS). Photo-induced electron transfer confirmed by the detection of the charge separated state [ZnP˙+]/C60˙- from fs-TAS occurs with rates (ket) of 3-4 × 1010 s-1 whereas the charge recombinations (CRs) are found to produce the [ZnP] ground state via two pathways (central [ZnP˙+]/C60˙- (ps) and terminal central [ZnP˙+]/C60˙- (ns) producing [1ZnP] (ground state) and [3ZnP*]). The formation of the T1 species is more predominant for 2.

12.
Phys Chem Chem Phys ; 19(32): 21532-21539, 2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28762412

ABSTRACT

An azophenine derivative was synthesized by coupling truxene and azophenine via the copper-free Sonagashira reaction using Pd2(dba)3 and As(PPh)3 as catalysts. The crystal structure of this heavy azophenine model (∼4000) was made and the identity of the structure was confirmed. By introducing truxene groups into this cross-conjugated structure, the deactivating rotations around the NH-C6H4 bonds were slowed down, which rendered this derivative near-IR emissive at 298 K. This species provided then the appropriate spectral and kinetic signatures for knowing where and what to look for in emeraldine, which was called non-emissive. Besides, two other compounds were also synthesized as models for this azophenine derivative for comparison and interpretation purposes.

13.
Chem Commun (Camb) ; 53(54): 7612-7615, 2017 Jul 04.
Article in English | MEDLINE | ID: mdl-28639661

ABSTRACT

Ferrocene-BODIPYmerocyanine dyads 5 and 6 were prepared and characterized by a variety of spectroscopic, electrochemical, and theoretical methods. Experimental and theoretical data on these NIR absorbing compounds are suggestive of unusual susceptibility (for BODIPY chromophores) of the delocalized π-system in 5 and 6 to protonation and low-potential oxidation of their π-systems.

14.
Dalton Trans ; 46(19): 6278-6290, 2017 May 16.
Article in English | MEDLINE | ID: mdl-28443867

ABSTRACT

Two novel triads had been designed through covalent bond connection of the boron dipyrromethane (BODIPY), free base porphyrin (H2P) or zinc(ii) porphyrin (ZnP) and N-methyl-2-phenyl-3,4-fulleropyrrolidine (C60) mediated by BODIPY. This closely spaced triad arrangement where porphyrin and fullerene are placed apart is anticipated to stabilize charge separation by separating the two radicals from each other. Two model polyads were synthesized with BODIPY and H2P or ZnP to investigate interaction between the two chromophores. Photo-excitation of the BODIPY triggered an efficient singlet energy transfer where the rates are found to be ∼1010-1011 s-1. For triads with C60 fast electron transfer was confirmed by the detection of the C60˙- signature from femtosecond transient absorption (fs-TA) in ∼0.4-3 ps. The charge recombination is estimated to be in the nanosecond window. This indicates the convenience of this arrangement for stabilizing the charge-separated state.

15.
Phys Chem Chem Phys ; 19(11): 7897-7909, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28262861

ABSTRACT

The "cold" low density plasma channels generated by the filamentation of powerful femtosecond laser pulses in aqueous solutions constitute a source of dense ionization. Here, we probed the radiation-assisted chemistry of water triggered by laser ionization via the radical-mediated synthesis of nanoparticles in gold chloride aqueous solutions. We showed that the formation of colloidal gold originates from the reduction of trivalent ionic gold initially present in solution by the reactive radicals (e.g. hydrated electrons) produced upon the photolysis of water. We analyzed both the reaction kinetics of the laser-induced hydrated electrons and the growth kinetics of the gold nanoparticles. Introduction of radical scavengers into the solutions and different initial concentrations of gold chloride provided information about the radical-mediated chemistry. The dense ionization results in the second order cross-recombination of the photolysis primary byproducts. Competition with recombination imposes the non-homogeneous interaction of reactive radicals with solute present in irradiated aqueous solutions. Such a laser-induced non-homogeneous chemistry suggests similarities with the radiation chemistry of water exposed to conventional densely ionizing radiation (high dose rate, high linear energy transfer).

16.
Inorg Chem ; 56(5): 2506-2517, 2017 Mar 06.
Article in English | MEDLINE | ID: mdl-28191847

ABSTRACT

The demetalation of a precursor dyad, 3, built upon a zinc(II)-containing artificial special pair and free-base antenna, leads to a new dyad, 4, for singlet energy transfer composed of cofacial free-base porphyrins (acceptor), [Fb]2 bridged by a 1,4-C6H4 group to a free-base antenna (donor), [Fb]. This dyad exhibits the general structure [M]2-C6H4-[Fb], where [M]2 = [Fb]2, and completes a series reported earlier, where [M]2 = [Mg]2 (2) and [Zn]2 (3). The latter dyads exhibit a bidirectional energy-transfer process at 298 K for 2 and at 77 K for 3. Interestingly, a very scarce case of cycling process is observed for the zinc-containing dyad at 298 K. The newly reported compound 4 exhibits a quasi unidirectional process [Fb]*→[Fb]2 (major, kET = 2 × 1011 s-1 at 298 K), where the remaining is [Fb]2*→[Fb] (minor, kET = 8 × 109 s-1 at 298 K), thus completing all possibilities. The results are analyzed in terms of molecular orbital couplings (density functional theory computations), Förster resonance energy transfer parameters, and temperature dependence of the decay traces. This study brings major insights about artificial special pair-containing dyads and clearly contributes to a better understanding of the communication between the two main components of our models and those already described in the literature.

17.
Phys Chem Chem Phys ; 19(4): 2926-2939, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-28079223

ABSTRACT

Two electron transfer polyads built upon [C60]-[ZnP]-[BODIPY] (1) and [ZnP]-[ZnP](-[BODIPY])(-[C60]) (2), where [C60] = N-methyl-2-phenyl-3,4-fulleropyrrolidine, [BODIPY] = boron dipyrromethane, and [ZnP] = zinc(ii) porphyrin, were synthesized along with their corresponding energy transfer polyads [ZnP]-[BODIPY] (1a) and [ZnP]-[ZnP]-[BODIPY] (2a) as well as relevant models. These polyads were studied using cyclic voltammetry, DFT computations, steady state and time-resolved fluorescence spectroscopy, and fs transient absorption spectroscopy. The rates for energy transfer, kET, [BODIPY]* → [ZnP] are ∼2.8 × 1010 s-1 for both 1a and 2a, with an efficiency of 99%. Concurrently, the fast appearance of the [C60]-˙ anion for 1 and 2 indicates that the charge separation occurs on the 20-30 ps timescale with the rates of electron transfer, ket, [ZnP]*/[C60] → [ZnP]+˙/[C60]-˙ of ∼0.9 × 1010 to ∼3.8 × 1010 s-1. The latter value is among the fastest for these types of polyads. Conversely, the charge recombination operates on the ns timescale. These rates are comparable to or faster than those reported for other more flexible [C60]-[ZnP]-[BODIPY] polyads, which can be rationalized by the donor-acceptor separations.

18.
Chemistry ; 23(21): 5010-5022, 2017 Apr 11.
Article in English | MEDLINE | ID: mdl-28127824

ABSTRACT

An original corrole-containing polyad for S1 energy transfer, in which one zinc(II)-porphyrin donor is linked to two free-base corrole acceptors by a truxene linker, is reported. This polyad exhibits a rapid zinc(II)-porphyrin*→free-base corrole transfer (4.83×1010  s-1 ; 298 K), even faster than the tautomerization in the excited state processes taking advantage of the good electronic communication provided by the truxene bridge. Importantly, the energy transfer process shows approximately 3-fold selectivity for one corrole N-H tautomer over the other even at low temperature (77 K). This selectivity is due to the difference in the J-integral being effective in both the Förster and Dexter mechanisms. The data are rationalized by DFT computations.

19.
Inorg Chem ; 55(20): 10329-10336, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27709919

ABSTRACT

A weakly fluorescent Pt-bridged dyad composed of zinc(II) porphyrin (Zn; donor) and free base (Fb; acceptor) has been designed and exhibits an ultrafast singlet energy transfer between porphyrins. The use of larger atoms within the central linker significantly increases the MO coupling between the two chromophores and inherently the electronic communication.

20.
Phys Chem Chem Phys ; 18(36): 24845-24849, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27711499

ABSTRACT

EtS(CH2)4SEt, L1, forms with CuI a luminescent 2D polymer [Cu4I4{µ-L1}2]n (CP1), which exhibits no triplet excitation energy migration, but with CuBr, it forms a 3D material (CP2), [(Cu2Br2){µ-L1}]n consisting of parallel (Cu2Br2S2)n layers bridged by L1's. CP2 shows T1-T1 annihilation at 298 K but not at 77 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...