Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
J Pers Med ; 13(6)2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37373966

ABSTRACT

Chronic back pain (CBP) is a complex heritable trait and a major cause of disability worldwide. We developed and validated a genome-wide polygenic risk score (PRS) for CBP using a large-scale GWAS based on UK Biobank participants of European ancestry (N = 265,000). The PRS showed poor overall predictive ability (AUC = 0.56 and OR = 1.24 per SD, 95% CI: 1.22-1.26), but individuals from the 99th percentile of PRS distribution had a nearly two-fold increased risk of CBP (OR = 1.82, 95% CI: 1.60-2.06). We validated the PRS on an independent TwinsUK sample, obtaining a similar magnitude of effect. The PRS was significantly associated with various ICD-10 and OPCS-4 diagnostic codes, including chronic ischemic heart disease (OR = 1.1, p-value = 4.8 × 10-15), obesity, metabolism-related traits, spine disorders, disc degeneration, and arthritis-related disorders. PRS and environment interaction analysis with twelve known CBP risk factors revealed no significant results, suggesting that the magnitude of G × E interactions with studied factors is small. The limited predictive ability of the PRS that we developed is likely explained by the complexity, heterogeneity, and polygenicity of CBP, for which sample sizes of a few hundred thousand are insufficient to estimate small genetic effects robustly.

2.
Glycobiology ; 31(2): 82-88, 2021 02 09.
Article in English | MEDLINE | ID: mdl-32521004

ABSTRACT

Human protein glycosylation is a complex process, and its in vivo regulation is poorly understood. Changes in glycosylation patterns are associated with many human diseases and conditions. Understanding the biological determinants of protein glycome provides a basis for future diagnostic and therapeutic applications. Genome-wide association studies (GWAS) allow to study biology via a hypothesis-free search of loci and genetic variants associated with a trait of interest. Sixteen loci were identified by three previous GWAS of human plasma proteome N-glycosylation. However, the possibility that some of these loci are false positives needs to be eliminated by replication studies, which have been limited so far. Here, we use the largest set of samples so far (4802 individuals) to replicate the previously identified loci. For all but one locus, the expected replication power exceeded 95%. Of the 16 loci reported previously, 15 were replicated in our study. For the remaining locus (near the KREMEN1 gene), the replication power was low, and hence, replication results were inconclusive. The very high replication rate highlights the general robustness of the GWAS findings as well as the high standards adopted by the community that studies genetic regulation of protein glycosylation. The 15 replicated loci present a good target for further functional studies. Among these, eight loci contain genes encoding glycosyltransferases: MGAT5, B3GAT1, FUT8, FUT6, ST6GAL1, B4GALT1, ST3GAL4 and MGAT3. The remaining seven loci offer starting points for further functional follow-up investigation into molecules and mechanisms that regulate human protein N-glycosylation in vivo.


Subject(s)
Glycosyltransferases/metabolism , Membrane Proteins/metabolism , Cohort Studies , Computational Biology , Glycosylation , Glycosyltransferases/chemistry , Glycosyltransferases/genetics , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Polysaccharides/metabolism
3.
Nucleic Acids Res ; 49(D1): D1347-D1350, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33245779

ABSTRACT

Genome-wide association studies have provided a vast array of publicly available SNP × phenotype association results. However, they are often in disparate repositories and formats, making downstream analyses difficult and time consuming. PheLiGe (https://phelige.com) is a database that provides easy access to such results via a web interface. The underlying database currently stores >75 billion genotype-phenotype associations from 7347 genome-wide and 1.2 million region-wide (e.g. cis-eQTL) association scans. The web interface allows for investigation of regional genotype-phenotype associations across many phenotypes, giving insights into the biological function affected by the variant in question. Furthermore, PheLiGe can compare regional patterns of association between different traits. This analysis can ascertain whether a co-association is due to pleiotropy or linkage. Moreover, comparison of association patterns for a complex trait of interest and gene expression and protein levels can implicate causal genes.


Subject(s)
Databases, Genetic , Disease/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Software , Genetic Linkage , Genome, Human , Genome-Wide Association Study , Genotype , Humans , Internet , Phenotype , Quantitative Trait, Heritable
4.
Commun Biol ; 3(1): 329, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32587327

ABSTRACT

Chronic musculoskeletal pain affects all aspects of human life. However, mechanisms of its genetic control remain poorly understood. Genetic studies of pain are complicated by the high complexity and heterogeneity of pain phenotypes. Here, we apply principal component analysis to reduce phenotype heterogeneity of chronic musculoskeletal pain at four locations: the back, neck/shoulder, hip, and knee. Using matrices of genetic covariances, we constructed four genetically independent phenotypes (GIPs) with the leading GIP (GIP1) explaining 78.4% of the genetic variance of the analyzed conditions, and GIP2-4 explain progressively less. We identified and replicated five GIP1-associated loci and one GIP2-associated locus and prioritized the most likely causal genes. For GIP1, we showed enrichment with multiple nervous system-related terms and genetic correlations with anthropometric, sociodemographic, psychiatric/personality traits and osteoarthritis. We suggest that GIP1 represents a biopsychological component of chronic musculoskeletal pain, related to physiological and psychological aspects and reflecting pain perception and processing.


Subject(s)
Chronic Pain/genetics , Musculoskeletal Diseases/genetics , Adult , Aged , Arthralgia/genetics , Back Pain/genetics , Female , Genetic Association Studies , Genetic Loci/genetics , Genetic Pleiotropy/genetics , Genome-Wide Association Study , Humans , Male , Middle Aged , Neck Pain/genetics , Phenotype , Polymorphism, Single Nucleotide , Principal Component Analysis , Quantitative Trait Loci/genetics , Shoulder Pain/genetics
5.
Pain ; 160(6): 1361-1373, 2019 06.
Article in English | MEDLINE | ID: mdl-30747904

ABSTRACT

Back pain (BP) is a common condition of major social importance and poorly understood pathogenesis. Combining data from the UK Biobank and CHARGE consortium cohorts allowed us to perform a very large genome-wide association study (total N = 509,070) and examine the genetic correlation and pleiotropy between BP and its clinical and psychosocial risk factors. We identified and replicated 3 BP-associated loci, including one novel region implicating SPOCK2/CHST3 genes. We provide evidence for pleiotropic effects of genetic factors underlying BP, height, and intervertebral disk problems. We also identified independent genetic correlations between BP and depression symptoms, neuroticism, sleep disturbance, overweight, and smoking. A significant enrichment for genes involved in the central nervous system and skeletal tissue development was observed. The study of pleiotropy and genetic correlations, supported by the pathway analysis, suggests at least 2 strong molecular axes of BP genesis, one related to structural/anatomical factors such as intervertebral disk problems and anthropometrics, and another related to the psychological component of pain perception and pain processing. These findings corroborate with the current biopsychosocial model as a paradigm for BP. Overall, the results demonstrate BP to have an extremely complex genetic architecture that overlaps with the genetic predisposition to its biopsychosocial risk factors. The work sheds light on pathways of relevance in the prevention and management of low BP.


Subject(s)
Back Pain/genetics , Depressive Disorder, Major/genetics , Genetic Predisposition to Disease/genetics , Multifactorial Inheritance/genetics , Depression/genetics , Female , Genome-Wide Association Study , Humans , Male , Polymorphism, Single Nucleotide/genetics , Risk Factors
6.
PLoS Genet ; 14(9): e1007601, 2018 09.
Article in English | MEDLINE | ID: mdl-30261039

ABSTRACT

Back pain is the #1 cause of years lived with disability worldwide, yet surprisingly little is known regarding the biology underlying this symptom. We conducted a genome-wide association study (GWAS) meta-analysis of chronic back pain (CBP). Adults of European ancestry were included from 15 cohorts in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and from the UK Biobank interim data release. CBP cases were defined as those reporting back pain present for ≥3-6 months; non-cases were included as comparisons ("controls"). Each cohort conducted genotyping using commercially available arrays followed by imputation. GWAS used logistic regression models with additive genetic effects, adjusting for age, sex, study-specific covariates, and population substructure. The threshold for genome-wide significance in the fixed-effect inverse-variance weighted meta-analysis was p<5×10(-8). Suggestive (p<5×10(-7)) and genome-wide significant (p<5×10(-8)) variants were carried forward for replication or further investigation in the remaining UK Biobank participants not included in the discovery sample. The discovery sample comprised 158,025 individuals, including 29,531 CBP cases. A genome-wide significant association was found for the intronic variant rs12310519 in SOX5 (OR 1.08, p = 7.2×10(-10)). This was subsequently replicated in 283,752 UK Biobank participants not included in the discovery sample, including 50,915 cases (OR 1.06, p = 5.3×10(-11)), and exceeded genome-wide significance in joint meta-analysis (OR 1.07, p = 4.5×10(-19)). We found suggestive associations at three other loci in the discovery sample, two of which exceeded genome-wide significance in joint meta-analysis: an intergenic variant, rs7833174, located between CCDC26 and GSDMC (OR 1.05, p = 4.4×10(-13)), and an intronic variant, rs4384683, in DCC (OR 0.97, p = 2.4×10(-10)). In this first reported meta-analysis of GWAS for CBP, we identified and replicated a genetic locus associated with CBP (SOX5). We also identified 2 other loci that reached genome-wide significance in a 2-stage joint meta-analysis (CCDC26/GSDMC and DCC).


Subject(s)
Back Pain/genetics , Chronic Pain/genetics , Genetic Loci , SOXD Transcription Factors/genetics , White People/genetics , Biomarkers, Tumor/genetics , DCC Receptor/genetics , DNA-Binding Proteins/genetics , Genome-Wide Association Study , Humans , Intracellular Signaling Peptides and Proteins/genetics , Introns/genetics , Polymorphism, Single Nucleotide , RNA, Long Noncoding
7.
Biochim Biophys Acta Gen Subj ; 1862(10): 2124-2133, 2018 10.
Article in English | MEDLINE | ID: mdl-29981899

ABSTRACT

BACKGROUND: Low back pain (LBP) is the symptom of a group of syndromes with heterogeneous underlying mechanisms and molecular pathologies, making treatment selection and patient prognosis very challenging. Moreover, symptoms and prognosis of LBP are influenced by age, gender, occupation, habits, and psychological factors. LBP may be characterized by an underlying inflammatory process. Previous studies indicated a connection between inflammatory response and total plasma N-glycosylation. We wanted to identify potential changes in total plasma N-glycosylation pattern connected with chronic low back pain (CLBP), which could give an insight into the pathogenic mechanisms of the disease. METHODS: Plasma samples of 1128 CLBP patients and 760 healthy controls were collected in clinical centers in Italy, Belgium and Croatia and used for N-glycosylation profiling by hydrophilic interaction ultra-performance liquid chromatography (HILIC-UPLC) after N-glycans release, fluorescent labeling and clean-up. Observed N-glycosylation profiles have been compared with a cohort of 126 patients with acute inflammation that underwent abdominal surgery. RESULTS: We have found a statistically significant increase in the relative amount of high-branched (tri-antennary and tetra-antennary) N-glycan structures on CLBP patients' plasma glycoproteins compared to healthy controls. Furthermore, relative amounts of disialylated and trisialylated glycan structures were increased, while high-mannose and glycans containing bisecting N-acetylglucosamine decreased in CLBP. CONCLUSIONS: Observed changes in CLBP on the plasma N-glycome level are consistent with N-glycosylation changes usually seen in chronic inflammation. GENERAL SIGNIFICANCE: To our knowledge, this is a first large clinical study on CLBP patients and plasma N-glycome providing a new glycomics perspective on potential disease pathology.


Subject(s)
Glycomics/methods , Glycoproteins/metabolism , Low Back Pain/diagnosis , Polysaccharides/metabolism , Adult , Aged , Case-Control Studies , Female , Follow-Up Studies , Glycoproteins/analysis , Glycosylation , Humans , Low Back Pain/metabolism , Male , Middle Aged , Polysaccharides/analysis , Prognosis , Retrospective Studies
8.
Diabetes ; 66(11): 2888-2902, 2017 11.
Article in English | MEDLINE | ID: mdl-28566273

ABSTRACT

To characterize type 2 diabetes (T2D)-associated variation across the allele frequency spectrum, we conducted a meta-analysis of genome-wide association data from 26,676 T2D case and 132,532 control subjects of European ancestry after imputation using the 1000 Genomes multiethnic reference panel. Promising association signals were followed up in additional data sets (of 14,545 or 7,397 T2D case and 38,994 or 71,604 control subjects). We identified 13 novel T2D-associated loci (P < 5 × 10-8), including variants near the GLP2R, GIP, and HLA-DQA1 genes. Our analysis brought the total number of independent T2D associations to 128 distinct signals at 113 loci. Despite substantially increased sample size and more complete coverage of low-frequency variation, all novel associations were driven by common single nucleotide variants. Credible sets of potentially causal variants were generally larger than those based on imputation with earlier reference panels, consistent with resolution of causal signals to common risk haplotypes. Stratification of T2D-associated loci based on T2D-related quantitative trait associations revealed tissue-specific enrichment of regulatory annotations in pancreatic islet enhancers for loci influencing insulin secretion and in adipocytes, monocytes, and hepatocytes for insulin action-associated loci. These findings highlight the predominant role played by common variants of modest effect and the diversity of biological mechanisms influencing T2D pathophysiology.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Gene Expression Regulation/physiology , Genome-Wide Association Study , White People , Genetic Variation , Humans
9.
Eur J Hum Genet ; 25(8): 982-987, 2017 08.
Article in English | MEDLINE | ID: mdl-28513607

ABSTRACT

Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder with a complex genetic architecture. To identify genetic variants underlying ASD, we performed single-variant and gene-based genome-wide association studies using a dense genotyping array containing over 2.3 million single-nucleotide variants in a discovery sample of 160 families with at least one child affected with non-syndromic ASD using a binary (ASD yes/no) phenotype and a quantitative autistic trait. Replication of the top findings was performed in Psychiatric Genomics Consortium and Erasmus Rucphen Family (ERF) cohort study. Significant association of quantitative autistic trait was observed with the TTC25 gene at 17q21.2 (effect size=10.2, P-value=3.4 × 10-7) in the gene-based analysis. The gene also showed nominally significant association in the cohort-based ERF study (effect=1.75, P-value=0.05). Meta-analysis of discovery and replication improved the association signal (P-valuemeta=1.5 × 10-8). No genome-wide significant signal was observed in the single-variant analysis of either the binary ASD phenotype or the quantitative autistic trait. Our study has identified a novel gene TTC25 to be associated with quantitative autistic trait in patients with ASD. The replication of association in a cohort-based study and the effect estimate suggest that variants in TTC25 may also be relevant for broader ASD phenotype in the general population. TTC25 is overexpressed in frontal cortex and testis and is known to be involved in cilium movement and thus an interesting candidate gene for autistic trait.


Subject(s)
Autism Spectrum Disorder/genetics , Carrier Proteins/genetics , Polymorphism, Single Nucleotide , Female , Humans , Male , Pedigree , Phenotype
10.
BMJ Open ; 6(10): e012070, 2016 10 19.
Article in English | MEDLINE | ID: mdl-27798002

ABSTRACT

INTRODUCTION: Chronic low back pain (CLBP) produces considerable direct costs as well as indirect burdens for society, industry and health systems. CLBP is characterised by heterogeneity, inclusion of several pain syndromes, different underlying molecular pathologies and interaction with psychosocial factors that leads to a range of clinical manifestations. There is still much to understand in the underlying pathological processes and the non-psychosocial factors which account for differences in outcomes. Biomarkers that may be objectively used for diagnosis and personalised, targeted and cost-effective treatment are still lacking. Therefore, any data that may be obtained at the '-omics' level (glycomics, Activomics and genome-wide association studies-GWAS) may be helpful to use as dynamic biomarkers for elucidating CLBP pathogenesis and may ultimately provide prognostic information too. By means of a retrospective, observational, case-cohort, multicentre study, we aim to investigate new promising biomarkers potentially able to solve some of the issues related to CLBP. METHODS AND ANALYSIS: The study follows a two-phase, 1:2 case-control model. A total of 12 000 individuals (4000 cases and 8000 controls) will be enrolled; clinical data will be registered, with particular attention to pain characteristics and outcomes of pain treatments. Blood samples will be collected to perform -omics studies. The primary objective is to recognise genetic variants associated with CLBP; secondary objectives are to study glycomics and Activomics profiles associated with CLBP. ETHICS AND DISSEMINATION: The study is part of the PainOMICS project funded by European Community in the Seventh Framework Programme. The study has been approved from competent ethical bodies and copies of approvals were provided to the European Commission before starting the study. Results of the study will be reviewed by the Scientific Board and Ethical Committee of the PainOMICS Consortium. The scientific results will be disseminated through peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT02037789; Pre-results.


Subject(s)
Biomarkers/metabolism , Chronic Pain/genetics , Genome-Wide Association Study , Glycomics , Low Back Pain/genetics , Case-Control Studies , Chronic Pain/blood , Chronic Pain/epidemiology , Chronic Pain/physiopathology , Female , Humans , Longitudinal Studies , Low Back Pain/blood , Low Back Pain/epidemiology , Low Back Pain/physiopathology , Male , Pain Measurement , Reproducibility of Results , Retrospective Studies
11.
Sci Rep ; 6: 31590, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27561104

ABSTRACT

Coffee is one of the most consumed beverages world-wide and one of the primary sources of caffeine intake. Given its important health and economic impact, the underlying genetics of its consumption has been widely studied. Despite these efforts, much has still to be uncovered. In particular, the use of non-additive genetic models may uncover new information about the genetic variants driving coffee consumption. We have conducted a genome-wide association study in two Italian populations using additive, recessive and dominant models for analysis. This has uncovered a significant association in the PDSS2 gene under the recessive model that has been replicated in an independent cohort from the Netherlands (ERF). The identified gene has been shown to negatively regulate the expression of the caffeine metabolism genes and can thus be linked to coffee consumption. Further bioinformatics analysis of eQTL and histone marks from Roadmap data has evidenced a possible role of the identified SNPs in regulating PDSS2 gene expression through enhancers present in its intron. Our results highlight a novel gene which regulates coffee consumption by regulating the expression of the genes linked to caffeine metabolism. Further studies will be needed to clarify the biological mechanism which links PDSS2 and coffee consumption.


Subject(s)
Alkyl and Aryl Transferases/genetics , Caffeine/administration & dosage , Coffee , Genome-Wide Association Study/methods , Adult , Alkyl and Aryl Transferases/metabolism , Caffeine/metabolism , Cohort Studies , Drinking Behavior , Female , Gene Expression Profiling , Genotype , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
12.
F1000Res ; 5: 914, 2016.
Article in English | MEDLINE | ID: mdl-27347381

ABSTRACT

Development of free/libre open source software is usually done by a community of people with an interest in the tool. For scientific software, however, this is less often the case. Most scientific software is written by only a few authors, often a student working on a thesis. Once the paper describing the tool has been published, the tool is no longer developed further and is left to its own device. Here we describe the broad, multidisciplinary community we formed around a set of tools for statistical genomics. The GenABEL project for statistical omics actively promotes open interdisciplinary development of statistical methodology and its implementation in efficient and user-friendly software under an open source licence. The software tools developed withing the project collectively make up the GenABEL suite, which currently consists of eleven tools. The open framework of the project actively encourages involvement of the community in all stages, from formulation of methodological ideas to application of software to specific data sets. A web forum is used to channel user questions and discussions, further promoting the use of the GenABEL suite. Developer discussions take place on a dedicated mailing list, and development is further supported by robust development practices including use of public version control, code review and continuous integration. Use of this open science model attracts contributions from users and developers outside the "core team", facilitating agile statistical omics methodology development and fast dissemination.

13.
Rev Endocr Metab Disord ; 17(2): 209-19, 2016 06.
Article in English | MEDLINE | ID: mdl-27129595

ABSTRACT

Food preferences are the first factor driving food choice and thus nutrition. They involve numerous different senses such as taste and olfaction as well as various other factors such as personal experiences and hedonistic aspects. Although it is clear that several of these have a genetic basis, up to now studies have focused mostly on the effects of polymorphisms of taste receptor genes. Therefore, we have carried out one of the first large scale (4611 individuals) GWAS on food likings assessed for 20 specific food likings belonging to 4 different categories (vegetables, fatty, dairy and bitter). A two-step meta-analysis using three different isolated populations from Italy for the discovery step and two populations from The Netherlands and Central Asia for replication, revealed 15 independent genome-wide significant loci (p < 5 × 10(-8)) for 12 different foods. None of the identified genes coded for either taste or olfactory receptors suggesting that genetics impacts in determining food likings in a much broader way than simple differences in taste perception. These results represent a further step in uncovering the genes that underlie liking of common foods that in the end will greatly help understanding the genetics of human nutrition in general.


Subject(s)
Food Preferences/physiology , Genetic Loci/genetics , Genome-Wide Association Study , Humans
14.
BMC Bioinformatics ; 17: 156, 2016 Apr 08.
Article in English | MEDLINE | ID: mdl-27059780

ABSTRACT

BACKGROUND: Compound Heterozygosity (CH) in classical genetics is the presence of two different recessive mutations at a particular gene locus. A relaxed form of CH alleles may account for an essential proportion of the missing heritability, i.e. heritability of phenotypes so far not accounted for by single genetic variants. Methods to detect CH-like effects in genome-wide association studies (GWAS) may facilitate explaining the missing heritability, but to our knowledge no viable software tools for this purpose are currently available. RESULTS: In this work we present the Generalized Compound Double Heterozygosity (GCDH) test and its implementation in the R package CollapsABEL. Time-consuming procedures are optimized for computational efficiency using Java or C++. Intermediate results are stored either in an SQL database or in a so-called big.matrix file to achieve reasonable memory footprint. Our large scale simulation studies show that GCDH is capable of discovering genetic associations due to CH-like interactions with much higher power than a conventional single-SNP approach under various settings, whether the causal genetic variations are available or not. CollapsABEL provides a user-friendly pipeline for genotype collapsing, statistical testing, power estimation, type I error control and graphics generation in the R language. CONCLUSIONS: CollapsABEL provides a computationally efficient solution for screening general forms of CH alleles in densely imputed microarray or whole genome sequencing datasets. The GCDH test provides an improved power over single-SNP based methods in detecting the prevalence of CH in human complex phenotypes, offering an opportunity for tackling the missing heritability problem. Binary and source packages of CollapsABEL are available on CRAN ( https://cran.r-project.org/web/packages/CollapsABEL ) and the website of the GenABEL project ( http://www.genabel.org/packages ).


Subject(s)
Alleles , Computational Biology , Gene Library , Genetic Association Studies , Heterozygote , Exome , Genetic Variation , Genotyping Techniques , Humans , Linear Models , Logistic Models , Microarray Analysis , Middle Aged , Netherlands , Phenotype , Polymorphism, Single Nucleotide , Prospective Studies , Sequence Analysis, DNA , Software
15.
Nat Genet ; 47(12): 1415-25, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26551672

ABSTRACT

We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.


Subject(s)
Chromosome Mapping , Diabetes Mellitus, Type 2/genetics , Genetic Loci , Genetic Predisposition to Disease , Hepatocyte Nuclear Factor 3-beta/genetics , Polymorphism, Single Nucleotide/genetics , Receptor, Melatonin, MT2/genetics , Binding Sites , Case-Control Studies , Chromatin Immunoprecipitation , Gene Expression Regulation , Genome-Wide Association Study , Genomics , Hepatocyte Nuclear Factor 3-beta/metabolism , Humans , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Liver/metabolism , Liver/pathology , Molecular Sequence Annotation , Receptor, Melatonin, MT2/metabolism
16.
Nat Protoc ; 10(9): 1285-96, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26226460

ABSTRACT

In order to meaningfully analyze common and rare genetic variants, results from genome-wide association studies (GWASs) of multiple cohorts need to be combined in a meta-analysis in order to obtain enough power. This requires all cohorts to have the same single-nucleotide polymorphisms (SNPs) in their GWASs. To this end, genotypes that have not been measured in a given cohort can be imputed on the basis of a set of reference haplotypes. This protocol provides guidelines for performing imputations with two widely used tools: minimac and IMPUTE2. These guidelines were developed and used by the Genome of the Netherlands (GoNL) consortium, which has created a population-specific reference panel for genetic imputations and used this reference to impute various Dutch biobanks. We also describe several factors that might influence the final imputation quality. This protocol, which has been used by the largest Dutch biobanks, should take approximately several days, depending on the sample size of the biobank and the computer resources available.


Subject(s)
Genome-Wide Association Study , Haplotypes , Meta-Analysis as Topic , Polymorphism, Single Nucleotide , Software
17.
PLoS Genet ; 11(7): e1005230, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26132169

ABSTRACT

Reference panels from the 1000 Genomes (1000G) Project Consortium provide near complete coverage of common and low-frequency genetic variation with minor allele frequency ≥0.5% across European ancestry populations. Within the European Network for Genetic and Genomic Epidemiology (ENGAGE) Consortium, we have undertaken the first large-scale meta-analysis of genome-wide association studies (GWAS), supplemented by 1000G imputation, for four quantitative glycaemic and obesity-related traits, in up to 87,048 individuals of European ancestry. We identified two loci for body mass index (BMI) at genome-wide significance, and two for fasting glucose (FG), none of which has been previously reported in larger meta-analysis efforts to combine GWAS of European ancestry. Through conditional analysis, we also detected multiple distinct signals of association mapping to established loci for waist-hip ratio adjusted for BMI (RSPO3) and FG (GCK and G6PC2). The index variant for one association signal at the G6PC2 locus is a low-frequency coding allele, H177Y, which has recently been demonstrated to have a functional role in glucose regulation. Fine-mapping analyses revealed that the non-coding variants most likely to drive association signals at established and novel loci were enriched for overlap with enhancer elements, which for FG mapped to promoter and transcription factor binding sites in pancreatic islets, in particular. Our study demonstrates that 1000G imputation and genetic fine-mapping of common and low-frequency variant association signals at GWAS loci, integrated with genomic annotation in relevant tissues, can provide insight into the functional and regulatory mechanisms through which their effects on glycaemic and obesity-related traits are mediated.


Subject(s)
Chromosome Mapping , Genetic Predisposition to Disease , Glycemic Index/genetics , Obesity/genetics , Quantitative Trait Loci/genetics , Body Mass Index , Gene Frequency/genetics , Genome-Wide Association Study , Germinal Center Kinases , Glucose-6-Phosphatase/genetics , Humans , Polymorphism, Single Nucleotide/genetics , Protein Serine-Threonine Kinases/genetics , Thrombospondins/genetics
18.
Nat Genet ; 47(6): 589-97, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25961943

ABSTRACT

Using a genome-wide screen of 9.6 million genetic variants achieved through 1000 Genomes Project imputation in 62,166 samples, we identify association to lipid traits in 93 loci, including 79 previously identified loci with new lead SNPs and 10 new loci, 15 loci with a low-frequency lead SNP and 10 loci with a missense lead SNP, and 2 loci with an accumulation of rare variants. In six loci, SNPs with established function in lipid genetics (CELSR2, GCKR, LIPC and APOE) or candidate missense mutations with predicted damaging function (CD300LG and TM6SF2) explained the locus associations. The low-frequency variants increased the proportion of variance explained, particularly for low-density lipoprotein cholesterol and total cholesterol. Altogether, our results highlight the impact of low-frequency variants in complex traits and show that imputation offers a cost-effective alternative to resequencing.


Subject(s)
Lipid Metabolism/genetics , Dyslipidemias/genetics , Gene Frequency , Genetic Loci , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Mutation, Missense , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
19.
Genome Res ; 25(6): 792-801, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25883321

ABSTRACT

Small insertions and deletions (indels) and large structural variations (SVs) are major contributors to human genetic diversity and disease. However, mutation rates and characteristics of de novo indels and SVs in the general population have remained largely unexplored. We report 332 validated de novo structural changes identified in whole genomes of 250 families, including complex indels, retrotransposon insertions, and interchromosomal events. These data indicate a mutation rate of 2.94 indels (1-20 bp) and 0.16 SVs (>20 bp) per generation. De novo structural changes affect on average 4.1 kbp of genomic sequence and 29 coding bases per generation, which is 91 and 52 times more nucleotides than de novo substitutions, respectively. This contrasts with the equal genomic footprint of inherited SVs and substitutions. An excess of structural changes originated on paternal haplotypes. Additionally, we observed a nonuniform distribution of de novo SVs across offspring. These results reveal the importance of different mutational mechanisms to changes in human genome structure across generations.


Subject(s)
Genetic Variation , Genome, Human , Alleles , Amino Acid Sequence , Female , Genomics , Haplotypes , Humans , INDEL Mutation , Male , Molecular Sequence Data , Mutation Rate , Polymorphism, Single Nucleotide , Retroelements/genetics , Sequence Alignment , Sequence Analysis, DNA
20.
Nat Commun ; 6: 6065, 2015 Mar 09.
Article in English | MEDLINE | ID: mdl-25751400

ABSTRACT

Variants associated with blood lipid levels may be population-specific. To identify low-frequency variants associated with this phenotype, population-specific reference panels may be used. Here we impute nine large Dutch biobanks (~35,000 samples) with the population-specific reference panel created by the Genome of The Netherlands Project and perform association testing with blood lipid levels. We report the discovery of five novel associations at four loci (P value <6.61 × 10(-4)), including a rare missense variant in ABCA6 (rs77542162, p.Cys1359Arg, frequency 0.034), which is predicted to be deleterious. The frequency of this ABCA6 variant is 3.65-fold increased in the Dutch and its effect (ßLDL-C=0.135, ßTC=0.140) is estimated to be very similar to those observed for single variants in well-known lipid genes, such as LDLR.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Cholesterol/blood , Mutation, Missense/genetics , Gene Frequency , Genetic Association Studies , Humans , Netherlands
SELECTION OF CITATIONS
SEARCH DETAIL
...