Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nanophotonics ; 13(12): 2271-2280, 2024 May.
Article in English | MEDLINE | ID: mdl-38774765

ABSTRACT

The optical and electronic tunability of the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has enabled emerging applications as diverse as bioelectronics, flexible electronics, and micro- and nano-photonics. High-resolution spatial patterning of PEDOT:PSS opens up opportunities for novel active devices in a range of fields. However, typical lithographic processes require tedious indirect patterning and dry etch processes, while solution-processing methods such as ink-jet printing have limited spatial resolution. Here, we report a method for direct write nano-patterning of commercially available PEDOT:PSS through electron-beam induced solubility modulation. The written structures are water stable and maintain the conductivity as well as electrochemical and optical properties of PEDOT:PSS, highlighting the broad utility of our method. We demonstrate the potential of our strategy by preparing prototypical nano-wire structures with feature sizes down to 250 nm, an order of magnitude finer than previously reported direct write methods, opening the possibility of writing chip-scale microelectronic and optical devices. We finally use the high-resolution writing capabilities to fabricate electrically-switchable optical diffraction gratings. We show active switching in this archetypal system with >95 % contrast at CMOS-compatible voltages of +2 V and -3 V, offering a route towards highly-miniaturized dynamic optoelectronic devices.

2.
Opt Express ; 32(6): 9777-9789, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571203

ABSTRACT

3D printed microoptics have become important tools for miniature endoscopy, novel CMOS-based on-chip sensors, OCT-fibers, among others. Until now, only image quality and spot diagrams were available for optical characterization. Here, we introduce Ronchi interferometry as ultracompact and quick quantitative analysis method for measuring the wavefront aberrations after propagating coherent light through the 3D printed miniature optics. We compare surface shapes by 3D confocal microscopy with optical characterizations by Ronchi interferograms. Phase retrieval gives us the transversal wave front aberration map, which indicates that the aberrations of our microlenses that have been printed with a Nanoscribe GT or Quantum X printer exhibit RMS wavefront aberrations as small as λ/20, Strehl ratios larger than 0.91, and near-diffraction limited modulation transfer functions. Our method will be crucial for future developments of 3D printed microoptics, as the method is ultracompact, ultra-stable, and very fast regarding measurement and evaluation. It could fit directly into a 3D printer and allows for in-situ measurements right after printing as well as fast iterations for improving the shape of the optical surface.

3.
Nanophotonics ; 12(8): 1397-1404, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37114093

ABSTRACT

We present an electrically switchable, compact metasurface device based on the metallic polymer PEDOT:PSS in combination with a gel polymer electrolyte. Applying square-wave voltages, we can reversibly switch the PEDOT:PSS from dielectric to metallic. Using this concept, we demonstrate a compact, standalone, and CMOS compatible metadevice. It allows for electrically controlled ON and OFF switching of plasmonic resonances in the 2-3 µm wavelength range, as well as electrically controlled beam switching at angles up to 10°. Furthermore, switching frequencies of up to 10 Hz, with oxidation times as fast as 42 ms and reduction times of 57 ms, are demonstrated. Our work provides the basis towards solid state switchable metasurfaces, ultimately leading to submicrometer-pixel spatial light modulators and hence switchable holographic devices.

4.
Light Sci Appl ; 12(1): 3, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36587036

ABSTRACT

Manipulating light on the nanoscale has become a central challenge in metadevices, resonant surfaces, nanoscale optical sensors, and many more, and it is largely based on resonant light confinement in dispersive and lossy metals and dielectrics. Here, we experimentally implement a novel strategy for dielectric nanophotonics: Resonant subwavelength localized confinement of light in air. We demonstrate that voids created in high-index dielectric host materials support localized resonant modes with exceptional optical properties. Due to the confinement in air, the modes do not suffer from the loss and dispersion of the dielectric host medium. We experimentally realize these resonant Mie voids by focused ion beam milling into bulk silicon wafers and experimentally demonstrate resonant light confinement down to the UV spectral range at 265 nm (4.68 eV). Furthermore, we utilize the bright, intense, and naturalistic colours for nanoscale colour printing. Mie voids will thus push the operation of functional high-index metasurfaces into the blue and UV spectral range. The combination of resonant dielectric Mie voids with dielectric nanoparticles will more than double the parameter space for the future design of metasurfaces and other micro- and nanoscale optical elements. In particular, this extension will enable novel antenna and structure designs which benefit from the full access to the modal field inside the void as well as the nearly free choice of the high-index material for novel sensing and active manipulation strategies.

5.
Nat Commun ; 13(1): 7183, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36418295

ABSTRACT

Switchable metasurfaces can actively control the functionality of integrated metadevices with high efficiency and on ultra-small length scales. Such metadevices include active lenses, dynamic diffractive optical elements, or switchable holograms. Especially, for applications in emerging technologies such as AR (augmented reality) and VR (virtual reality) devices, sophisticated metaoptics with unique functionalities are crucially important. In particular, metaoptics which can be switched electrically on or off will allow to change the routing, focusing, or functionality in general of miniaturized optical components on demand. Here, we demonstrate metalenses-on-demand made from metallic polymer plasmonic nanoantennas which are electrically switchable at CMOS (complementary metal-oxide-semiconductor) compatible voltages of ±1 V. The nanoantennas exhibit plasmonic resonances which can be reversibly switched ON and OFF via the applied voltage, utilizing the optical metal-to-insulator transition of the metallic polymer. Ultimately, we realize an electro-active non-volatile multi-functional metaobjective composed of two metalenses, whose unique optical states can be set on demand. Overall, our work opens up the possibility for a new level of electro-optical elements for ultra-compact photonic integration.

6.
Sensors (Basel) ; 22(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35898072

ABSTRACT

The detection and quantification of glucose concentrations in human blood or in the ocular fluid gain importance due to the increasing number of diabetes patients. A reliable determination of these low concentrations is hindered by the complex aqueous environments in which various biomolecules are present. In this study, we push the detection limit as well as the discriminative power of plasmonic nanoantenna-based sensors towards the physiological limit. We utilize plasmonic surface-enhanced infrared absorption spectroscopy (SEIRA) to study aqueous solutions of mixtures of up to five different physiologically relevant saccharides, namely the monosaccharides glucose, fructose, and galactose, as well as the disaccharides maltose and lactose. Resonantly tuned plasmonic nanoantennas in a reflection flow cell geometry allow us to enhance the specific vibrational fingerprints of the mono- and disaccharides. The obtained spectra are analyzed via principal component analysis (PCA) using a machine learning algorithm. The high performance of the sensor together with the strength of PCA allows us to detect concentrations of aqueous mono- and disaccharides solutions down to the physiological levels of 1 g/L. Furthermore, we demonstrate the reliable discrimination of the saccharide concentrations, as well as compositions in mixed solutions, which contain all five mono- and disaccharides simultaneously. These results underline the excellent discriminative power of plasmonic SEIRA spectroscopy in combination with the PCA. This unique combination and the insights gained will improve the detection of biomolecules in different complex environments.


Subject(s)
Carbohydrates , Sugars , Disaccharides/chemistry , Glucose/analysis , Humans , Principal Component Analysis , Water/chemistry
7.
Science ; 374(6567): 612-616, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34709910

ABSTRACT

Electrical switching of a metal-to-insulator transition would provide a building block for integrated electro-optically active plasmonics. In this work, we realize plasmonic nanoantennas from metallic polymers, which show well-pronounced localized plasmon resonances in their metallic state. As a result of the electrochemically driven optical metal-to-insulator transition of the polymer, the plasmonic resonances can be electrically switched fully off and back on at video-rate frequencies of up to 30 hertz by applying alternating voltages of only ±1 volt. With the use of this concept, we demonstrate electrically switchable beam-steering metasurfaces with a 100% contrast ratio in transmission. Our approach will help to realize ultrahigh efficiency plasmonic-based integrated active optical devices, including high-resolution augmented and virtual reality technologies.

8.
Sci Adv ; 6(19): eaaz0566, 2020 May.
Article in English | MEDLINE | ID: mdl-32494706

ABSTRACT

Active plasmonic and nanophotonic systems require switchable materials with extreme material contrast, short switching times, and negligible degradation. On the quest for these supreme properties, an in-depth understanding of the nanoscopic processes is essential. Here, we unravel the nanoscopic details of the phase transition dynamics of metallic magnesium (Mg) to dielectric magnesium hydride (MgH2) using free-standing films for in situ nanoimaging. A characteristic MgH2 phonon resonance is used to achieve unprecedented chemical specificity between the material states. Our results reveal that the hydride phase nucleates at grain boundaries, from where the hydrogenation progresses into the adjoining nanocrystallites. We measure a much faster nanoscopic hydride phase propagation in comparison to the macroscopic propagation dynamics. Our innovative method offers an engineering strategy to overcome the hitherto limited diffusion coefficients and has substantial impact on the further design, development, and analysis of switchable phase transition as well as hydrogen storage and generation materials.

9.
ACS Nano ; 13(8): 8659-8668, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31294546

ABSTRACT

Wide-spread applications of nanoparticles require large-scale fabrication techniques. Being intrinsically scalable, bottom-up nanoparticle synthesis shows an ever-growing control over particle morphology, enabling even chirally selective shapes. Significant efforts have been undertaken to refine the synthesis in order to decrease the structural spread of the particles and to purify and maximize the resulting handedness. So far, imaging technologies such as electron microscopy are mostly used to investigate the quality of the synthesis. However, for nanophotonic and plasmonic applications, the optical properties are, in fact, key. In this work, we show that single particle chiral scatterometry holds great potential as a feedback to characterize the (chir-)optical quality of chemically synthesized nanoparticles. The spectra of single helicoid nanoparticles reveal a diverse set of chiroptical responses with hugely varying absolute chiral asymmetry in spite of the well-controlled morphology of the particles. Averaging over the single nanoparticles reproduces the solution ensemble measurement remarkably well. This demonstrates that the single particles, despite their morphological and consequently chiroptical differences, exhibit a clearly pronounced chiral spectral and structural feature. We find that the g-factor, that is, the degree of asymmetry of chiral light scattering of single nanoparticles can be up to 4 times larger than that for the ensemble. This proves that chiral scatterometry can be a highly important optical feedback for bottom-up nanoparticle synthesis as it reveals that the asymmetry of the ensemble solution can be further increased and maximized by appropriate refinement methods or by postfabrication purification.

SELECTION OF CITATIONS
SEARCH DETAIL
...