Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Acta Crystallogr D Struct Biol ; 78(Pt 7): 846-852, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35775984

ABSTRACT

Dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step in the lysine-biosynthetic pathway converting pyruvate and L-aspartate-ß-semialdehyde to dihydrodipicolinate. Kinetic studies indicate that the pyruvate analog (S)-2-bromopropionate inactivates the enzyme in a pseudo-first-order process. An initial velocity pattern indicates that (S)-2-bromopropionate is a competitive inhibitor versus pyruvate, with an inhibition constant of about 8 mM. Crystals of DHDPS complexed with (S)-2-bromopropionate formed in a solution consisting of 50 mM HEPES pH 7.5, 18% polyethylene glycol 3350, 8 mM spermidine, 0.2 M sodium tartrate and 5.0 mg ml-1 DHDPS. The crystals diffracted to 2.15 Šresolution and belonged to space group P1. The crystal structure confirms the displacement of bromine and the formation of a covalent attachment between propionate and Lys161 at the active site of the enzyme. Lys161 is the active-site nucleophile that attacks the carbonyl C atom of pyruvate and subsequently generates an imine adduct in the first half-reaction of the ping-pong enzymatic reaction. A comparison of the crystal structures of DHDPS complexed with pyruvate or (S)-2-bromopropionate indicates the covalent adduct formed from (S)-2-bromopropionate leads to a rotation of about 180° of the ß-δ C atoms of Lys61 that aligns the covalently bound propionate fairly closely with the imine adduct formed with pyruvate.


Subject(s)
Escherichia coli , Hydro-Lyases , Propionates , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Hydro-Lyases/chemistry , Hydro-Lyases/metabolism , Imines/metabolism , Kinetics , Propionates/metabolism , Pyruvates/chemistry , Pyruvates/metabolism
2.
Arch Biochem Biophys ; 702: 108819, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33639104

ABSTRACT

Dihydrodipicolinate synthase (DHDPS) catalyzes the first step in the biosynthetic pathway for production of l-lysine in bacteria and plants. The enzyme has received interest as a potential drug target owing to the absence of the enzyme in mammals. The DHDPS reaction is the rate limiting step in lysine biosynthesis and involves the condensation of l-aspartate-ß-semialdehyde and pyruvate to form 2, 3-dihydrodipicolinate. 2, 4-oxo-pentanoic acid (acetopyruvate) is a slow-binding inhibitor of DHDPS that is competitive versus pyruvate with an initial Ki of about 20 µM and a final inhibition constant of about 1.4 µM. The enzyme:acetopyruvate complex displays an absorbance spectrum with a λmax at 304 nm and a longer wavelength shoulder. The rate constant for formation of the complex is 86 M-1 s-1. The enzyme forms a covalent enamine complex with the first substrate pyruvate and can be observed spectrally with a λmax at 271 nm. The spectra of the enzyme in the presence of pyruvate and acetopyruvate shows the initial formation of the pyruvate enamine intermediate followed by the slower appearance of the E:acetopyruvate spectra with a rate constant of about 0.013 s-1. The spectral studies suggest the formation of a Schiff base between acetopyruvate and K161 on enzyme that subsequently deprotonates to form a resonance stabilized anion similar to the enamine intermediate formed with pyruvate. The crystal structure of the E:acetopyruvate complex confirms the formation of the Schiff base between acetopyruvate and K161.


Subject(s)
Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Escherichia coli/enzymology , Hydro-Lyases/antagonists & inhibitors , Hydro-Lyases/metabolism , Pyruvates/metabolism , Pyruvates/pharmacology , Catalytic Domain , Crystallography, X-Ray , Hydro-Lyases/chemistry , Hydrogen Bonding , Kinetics , Molecular Docking Simulation , Protein Binding , Spectrum Analysis
3.
Arch Biochem Biophys ; 653: 50-62, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29944868

ABSTRACT

Dihydrodipicolinate synthase (DHDPS) catalyzes the first step in the pathway for the biosynthesis of L-lysine in most bacteria and plants. The substrates for the enzyme are pyruvate and L-aspartate-ß-semialdehyde (ASA). The product of the reaction was originally proposed to be 2,3-dihydrodipicolinate (DHDP), but has now generally been assumed to be (4S)-4-hydroxy-2,3,4,5-tetrahydro-(2S)-dipicolinate (HTPA). ASA is unstable at high pH and it is proposed that ASA reacts with itself. At high pH ASA also reacts with Tris buffer and both reactions are largely reversible at low pH. It is proposed that the basic un-protonated form of the amine of Tris or the α-amine of ASA reacts with the aldehyde functional group of ASA to generate an imine product. Proton NMR spectra of ASA done at different pH values shows new NMR peaks at high pH, but not at low pH, confirming the presence of reaction products for ASA at high pH. The enzymatic product of the DHDPS reaction was examined at low pH by proton NMR starting with either 3 h-pyruvate or 3 d-pyruvate and identical NMR spectra were obtained with four new NMR peaks observed at 1.5, 2.3, 3.9 and 4.1 ppm in both cases. The NMR results were most consistent with DHDP as the reaction product. The UV-spectral studies of the DHDPS reaction shows the formation of an initial product with a broad spectral peak at 254 nM. The DHDPS reaction product was further examined by reduction of the enzymatic reaction components with borohydride followed by GC-MS analysis of the mixture. Three peaks were found at 88, 119 and 169 m/z, consistent with pyruvate, homoserine (reduction product of ASA), and the reduction product of DHDP (1,2,3,6-tetrahydropyridine-2,6-dicarboxylate). There was no indication for a peak associated with the reduced form of HTPA.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Hydro-Lyases/metabolism , Picolinic Acids/metabolism , Aspartic Acid/analogs & derivatives , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Gas Chromatography-Mass Spectrometry , Hydrogen-Ion Concentration , Proton Magnetic Resonance Spectroscopy , Spectrophotometry, Ultraviolet
4.
PLoS One ; 11(1): e0146525, 2016.
Article in English | MEDLINE | ID: mdl-26815040

ABSTRACT

The enzyme dihydrodipicolinate reductase (DHDPR) is a component of the lysine biosynthetic pathway in bacteria and higher plants. DHDPR catalyzes the NAD(P)H dependent reduction of 2,3-dihydrodipicolinate to the cyclic imine L-2,3,4,5,-tetrahydropicolinic acid. The dapB gene that encodes dihydrodipicolinate reductase has previously been cloned, but the expression of the enzyme is low and the purification is time consuming. Therefore the E. coli dapB gene was cloned into the pET16b vector to improve the protein expression and simplify the purification. The dapB gene sequence was utilized to design forward and reverse oligonucleotide primers that were used to PCR the gene from Escherichia coli genomic DNA. The primers were designed with NdeI or BamHI restriction sites on the 5'and 3' terminus respectively. The PCR product was sequenced to confirm the identity of dapB. The gene was cloned into the expression vector pET16b through NdeI and BamHI restriction endonuclease sites. The resulting plasmid containing dapB was transformed into the bacterial strain BL21 (DE3). The transformed cells were utilized to grow and express the histidine-tagged reductase and the protein was purified using Ni-NTA affinity chromatography. SDS/PAGE gel analysis has shown that the protein was 95% pure and has approximate subunit molecular weight of 28 kDa. The protein purification is completed in one day and 3 liters of culture produced approximately 40-50 mgs of protein, an improvement on the previous protein expression and multistep purification.


Subject(s)
Dihydrodipicolinate Reductase/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Recombinant Fusion Proteins/biosynthesis , Chromatography, Affinity , Cloning, Molecular , Dihydrodipicolinate Reductase/chemistry , Dihydrodipicolinate Reductase/genetics , Electrophoresis, Polyacrylamide Gel , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Histidine/genetics , Histidine/metabolism , Oligopeptides/genetics , Oligopeptides/metabolism , Plasmids/genetics , Plasmids/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification
5.
Arch Biochem Biophys ; 516(1): 67-74, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-21982920

ABSTRACT

The amino acid L-lysine is synthesized in Saccharomyces cerevisiae via the α-aminoadipate pathway. An as yet unidentified PLP-containing aminotransferase is thought to catalyze the formation of α-aminoadipate from α-ketoadipate in the L-lysine biosynthetic pathway that could be the yeast Aro8 gene product. A screen of several different amino acids and keto-acids showed that the enzyme uses L-tyrosine, L-phenylalanine, α-ketoadipate, and L-α-aminoadipate as substrates. The UV-visible spectrum of the aminotransferase exhibits maxima at 280 and 343 nm at pH 7.5. As the pH is decreased the peak at 343 nm (the unprotonated internal aldimine) disappears and two new peaks at 328 and 400 nm are observed representing the enolimine and ketoenamine tautomers of the protonated aldimine, respectively. Addition, at pH 7.1, of α-ketoadipate to free enzyme leads to disappearance of the absorbance at 343 nm and appearance of peaks at 328 and 424 nm. The V/E(t) and V/K(α-ketoadipate)E(t) pH profiles are pH independent from pH 6.5 to 9.6, while the V/K(L-tyrosine) pH-rate profile decreases below a single pK(a) of 7.0 ± 0.1. Data suggest the active enzyme form is with the internal aldimine unprotonated. We conclude the enzyme should be categorized as a α-aminoadipate aminotransferase.


Subject(s)
2-Aminoadipate Transaminase/metabolism , Saccharomyces cerevisiae/enzymology , 2-Aminoadipate Transaminase/genetics , Cloning, Molecular , Genes, Fungal , Hydrogen-Ion Concentration , Saccharomyces cerevisiae/genetics , Substrate Specificity
6.
Biochemistry ; 49(29): 6093-103, 2010 Jul 27.
Article in English | MEDLINE | ID: mdl-20550197

ABSTRACT

O-Acetylserine sulfhydrylase is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the final step in the cysteine biosynthetic pathway in enteric bacteria and plants, the replacement of the beta-acetoxy group of O-acetyl-L-serine (OAS) by a thiol to give L-cysteine. Previous studies of the K41A mutant enzyme showed L-methionine bound in an external Schiff base (ESB) linkage to PLP as the enzyme was isolated. The mutant enzyme exists in a closed form, optimizing the orientation of the cofactor PLP and properly positioning active site functional groups for reaction. The trigger for closing the active site upon formation of the ESB is thought to be interaction of the substrate alpha-carboxylate with the substrate-binding loop comprised of T68, S69, G70, and N71, and Q142, which is positioned above the cofactor as one looks into the active site. To probe the contribution of these residues to the active site closing and orientation of PLP in the ESB, T68, S69, N71, and Q142 were changed to alanine. Absorbance, fluorescence, near UV-visible CD, and (31)P NMR spectral studies and pre-steady state kinetic studies were used to characterize the mutant enzymes. All of the mutations affect closure of the active site, but to differing extents. In addition, the site appears to be more hydrophilic given that the ESBs do not exhibit a significant amount of the enolimine tautomer. No buildup of the alpha-aminoacrylate intermediate (AA) is observed for the T68A and Q142A mutant enzymes. However, pyruvate is produced at a rate much greater than that of the wild-type enzyme. Data suggest that T68 and Q142 play a role in stabilizing the AA. Both residues donate a hydrogen bond to one of the carboxylate oxygens of the methionine ESB and may also be responsible for the proper orientation of the ESB to generate the AA. The S69A and N71A mutants exhibit formation of the AA, but the rate constant for its formation from the ESB is decreased by 1 order of magnitude compared to that of the wild type. S69 donates a hydrogen bond to the substrate carboxylate in the ESB, while N71 donates hydrogen bonds to O3' of the cofactor and the carboxylate of the ESB; these side chains may also affect the orientation of the ESB. Data suggest that interaction of intermediates with the substrate-binding loop and Q142 gives a properly aligned Michaelis complex and facilitates the beta-elimination reaction.


Subject(s)
Cysteine Synthase/chemistry , Acrylates/chemistry , Amino Acid Sequence , Amino Acid Substitution , Catalytic Domain , Cysteine Synthase/genetics , Molecular Sequence Data , Mutation , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Schiff Bases/chemistry , Spectrometry, Fluorescence
7.
Biochim Biophys Acta ; 1790(6): 575-80, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19264108

ABSTRACT

BACKGROUND: The enzyme L-serine-glyoxylate aminotransferase (SGAT) from Hyphomicrobium methylovorum is a PLP-containing enzyme that catalyzes the conversion of L-serine and glyoxylate to hydroxypyruvate and glycine. The cloned enzyme expressed in Escherichia coli is isolated as a mixture of the E:PLP and E:PMP forms. The PLP form of the enzyme has a maximum absorbance at 413 nm. METHODS: Uv-visible spectra of SGAT were obtained using an HP-8453 diode array spectrophotometer in the absence and presence of substrates and substrate analogs. Pre-steady state kinetic studies were carried out using an OLIS rapid scanning spectrophotometer in the rapid scanning mode. RESULTS: Incubation of the enzyme with a saturating concentration D-serine leads to a shift in the 413 nm peak to 421 nm that is ascribed to the external aldimine. The reverse stereochemistry of D-serine does not allow for abstraction of the C alpha proton by the epsilon-amine of the active site lysine residue leading to an abortive external aldimine intermediate. Pre-steady state studies pushing SGAT against D-serine leads to a rapid decrease in the 413 nm peak and an increase at approximately 330 nm with an associated rate constant of 47 s(-1) at pH 7.6. This is followed by a slower decrease (0.26 s(-1)) at 330 nm and an increase and shift of the 413 nm peak to 421 nm. The intermediate species that absorbs at approximately 330 nm is attributed to the gem-diamine intermediate. The rate of the fast phase increases with pH and increase in rate is likely due to the deprotonation of an enzymatic group that accepts a proton from the alpha-amine of D-serine. In the presence of hydroxypyruvate and ammonia the enzyme spectra display an increase in absorbance at 521 nm that occurs on the order of minutes. The shape and position of the 521 nm species is consistent with a quinonoid intermediate. GENERAL SIGNIFICANCE: The data suggest a non-enzymatic reaction between hydroxypyruvate and ammonia to form an imine which will be in equilibrium with the enamine. A mechanism is proposed by which the enamine reacts with the PLP form of SGAT to generate the stable highly conjugated quinonoid intermediate.


Subject(s)
Diamines/chemistry , Hyphomicrobium/enzymology , Quinones/chemistry , Transaminases/metabolism , Molecular Structure , Pyruvates/chemistry , Pyruvates/metabolism , Serine/chemistry , Serine/metabolism , Transaminases/chemistry
8.
Biochemistry ; 46(50): 14578-88, 2007 Dec 18.
Article in English | MEDLINE | ID: mdl-18027982

ABSTRACT

The NAD-malic enzyme catalyzes the oxidative decarboxylation of l-malate. Structures of the enzyme indicate that arginine 181 (R181) is within hydrogen bonding distance of the 1-carboxylate of malate in the active site of the enzyme and interacts with the carboxamide side chain of the nicotinamide ring of NADH, but not with NAD+. Data suggested R181 might play a central role in binding and catalysis in malic enzyme, and it was thus changed to lysine and glutamine to probe its potential function. A nearly 100-fold increase in the Km for malate and a 30-fold increase in the Ki for oxalate, an analogue of the enolpyruvate intermediate, in the R181Q and R181K mutants are consistent with a role for R181 in binding substrates. The mutant enzymes also exhibit a >10-fold increase in KiNADH, but only a slight or no change in KNAD, consistent with rotation of the nicotinamide ring into the malate binding site upon reduction of NAD+ to NADH. The activity of the R181Q mutant can be rescued by ammonium ion likely by binding in the pocket vacated by the guanidinium group of R181. Results suggest 2 mol of ammonia bind per mole of active sites with a high-affinity KNH4 of 0.7 +/- 0.1 mM and a low-affinity KNH4 of approximately 420 mM. Occupancy of the high-affinity site, likely by NH4+, results in an increase in the affinity of malate, oxalate, and NADH (with no change in NAD affinity), consistent with the above-proposed roles for R181. The second molecule to bind is likely neutral NH3, and its binding increases V/Et approximately 20-fold. Primary deuterium and 13C isotope effects measured in the absence and presence of ammonium ion suggest R181Q predominantly affects the rate of the reaction by changing the rate of the precatalytic conformational change. The isotope effects do not change upon binding the second mole of ammonia in spite of the 20-fold increase in V/Et. Thus, the R181Q mutant enzyme exists as an equilibrium mixture between active and less active forms, and NH3 stabilizes the more active conformation of the enzyme.


Subject(s)
Ascaris suum/enzymology , Helminth Proteins/metabolism , Malate Dehydrogenase/metabolism , Animals , Arginine/chemistry , Arginine/genetics , Arginine/metabolism , Binding Sites , Catalysis , Helminth Proteins/chemistry , Helminth Proteins/genetics , Humans , Hydrogen-Ion Concentration , Kinetics , Malate Dehydrogenase/chemistry , Malate Dehydrogenase/genetics , Malates/chemistry , Malates/metabolism , NAD/chemistry , NAD/metabolism , NADP/chemistry , NADP/metabolism , Oxaloacetic Acid/chemistry , Oxaloacetic Acid/metabolism , Oxidation-Reduction , Protein Structure, Secondary
9.
Biochemistry ; 45(29): 9000-6, 2006 Jul 25.
Article in English | MEDLINE | ID: mdl-16846243

ABSTRACT

An isothermal titration calorimetric study of the binding of substrates and inhibitors to different complexes of tartrate dehydrogenase (TDH) from Pseudomonas putida was carried out. TDH catalyzes the nicotinamide adenine dinucleotide (NAD)-dependent oxidative decarboxylation of d-malate and has an absolute requirement for both a divalent and monovalent metal ion for activity. The ligands Mn(2+), meso-tartrate, oxalate, and reduced nicotinamide adenine dinucleotide (NADH) bound to all TDH complexes with a stoichiometry of 1 per enzyme dimer. The exception is NAD, which binds to E/K(+), E/K(+)/Mn(2+), and E/K(+)/Mg(2+) complexes with a stoichiometry of two per enzyme dimer. The binding studies suggest a half-of-the-sites mechanism for TDH. No significant heat changes were observed for d-malate in the presence of the E/K(+)/Mn(2+) complex, suggesting that it did not bind. In contrast, meso-tartrate does bind to E/K(+)/Mn(2+) but gives no significant heat change in the presence of E/Mn(2+), suggesting that K(+) is required for meso-tartrate binding. meso-Tartrate also binds with a large DeltaC(p) value and likely binds via a different binding mode than d-malate, which binds only in the presence of NAD. In contrast to all of the other ligands tested, the binding of Mn(2+) is entropically driven, likely the result of the entropically favored disruption of ordered water molecules coordinated to Mn(2+) in solution that are lost upon binding to the enzyme. Oxalate, a competitive inhibitor of malate, binds with the greatest affinity to E/K(+)/Mn(2+)/NADH, and its binding is associated with the uptake of a proton. Overall, with d-malate as the substrate, data are consistent with a random addition of K(+), Mn(2+), and NAD followed by the ordered addition of d-malate; there is significant synergism in the binding of NAD and K(+). Although the binding of meso-tartrate also requires enzyme-bound K(+) and Mn(2+), the binding of meso-tartrate and NAD is random.


Subject(s)
Alcohol Oxidoreductases/metabolism , Pseudomonas putida/enzymology , Alcohol Oxidoreductases/antagonists & inhibitors , Calorimetry , Dimerization , Kinetics , Manganese/pharmacology , NAD/metabolism , Thermodynamics
10.
Biochemistry ; 44(48): 15930-6, 2005 Dec 06.
Article in English | MEDLINE | ID: mdl-16313196

ABSTRACT

Serine-glyoxylate aminotransferase (SGAT) from Hyphomicrobium methylovorum is a pyridoxal 5'-phosphate (PLP) enzyme that catalyzes the interconversion of L-serine and glyoxylate to hydroxypyruvate and glycine. The primary deuterium isotope effect using L-serine 2-D is one on (V/K)serine and V in the steady state. Pre-steady-state experiments also indicate that there is no primary deuterium isotope effect with L-serine 2-D. The results suggest there is no rate limitation by abstraction of the alpha proton of L-serine in the SGAT reaction. In the steady-state a solvent deuterium isotope effect of about 2 was measured on (V/K)L-serine and (V/K)ketomalonate and about 5.5 on V. Similar solvent isotope effects were observed in the pre-steady-state for the natural substrates and the alternative substrate ketomalonate. In the pre-steady-state, no reaction intermediates typical of PLP enzymes were observed with the substrates L-serine, glyoxylate, and hydroxypyruvate. The data suggest that breakdown and formation of the ketimine intermediate is the primary rate-limiting step with the natural substrates. In contrast, using the alternative substrate ketomalonate, pre-steady-state experiments display the transient formation of a 490 nm absorbing species typical of a quinonoid intermediate. The solvent isotope effect results also suggest that with ketomalonate as substrate protonation at C(alpha) is the slowest step in the SGAT reaction. This is the first report of a rate-limiting protonation of a quinonoid at C(alpha) of the external Schiff base in an aminotransferase reaction.


Subject(s)
Malonates/metabolism , Transaminases/metabolism , Deuterium , Hyphomicrobium/enzymology , Kinetics , Quinones/chemistry , Schiff Bases/chemistry , Serine/metabolism , Transaminases/chemistry
11.
Biochemistry ; 44(9): 3626-35, 2005 Mar 08.
Article in English | MEDLINE | ID: mdl-15736972

ABSTRACT

The pH dependence of kinetic parameters of several active site mutants of the Ascaris suum NAD-malic enzyme was investigated to determine the role of amino acid residues likely involved in catalysis on the basis of three-dimensional structures of malic enzyme. Lysine 199 is positioned to act as the general base that accepts a proton from the 2-hydroxyl of malate during the hydride transfer step. The pH dependence of V/K(malate) for the K199R mutant enzyme reveals a pK of 5.3 for an enzymatic group required to be unprotonated for activity and a second pK of 6.3 that leads to a 10-fold loss in activity above the pK of 6.3 to a new constant value up to pH 10. The V profile for K199R is pH independent from pH 5.5 to pH 10 and decreases below a pK of 4.9. Tyrosine 126 is positioned to act as the general acid that donates a proton to the enolpyruvate intermediate to form pyruvate. The pH dependence of V/K(malate) for the Y126F mutant is qualitatively similar to K199R, with a requirement for a group to be unprotonated for activity with a pK of 5.6 and a partial activity loss of about 3-fold above a pK of 6.7 to a new constant value. The Y126F mutant enzyme is about 60000-fold less active than the wild-type enzyme. In contrast to K199R, the V rate profile for Y126F also shows a partial activity loss above pH 6.6. The wild-type pH profiles were reinvestigated in light of the discovery of the partial activity change for the mutant enzymes. The wild-type V/K(malate) pH-rate profile exhibits the requirement for a group to be unprotonated for catalysis with a pK of 5.6 and also shows the partial activity loss above a pK of 6.4. The wild-type V pH-rate profile decreases below a pK of 5.2 and is pH independent from pH 5.5 to pH 10. Aspartate 294 is within hydrogen-bonding distance to K199 in the open and closed forms of malic enzyme. D294A is about 13000-fold less active than the wild-type enzyme, and the pH-rate profile for V/K(malate) indicates the mutant is only active above pH 9. The data suggest that the pK present at about pH 5.6 in all of the pH profiles represents D294, and during catalysis D294 accepts a proton from K199 to allow K199 to act as a general base in the reaction. The pK for the general acid in the reaction is not observed, consistent with rapid tautomerization of enolpyruvate. No other ionizable group in the active site is likely responsible for the partial activity change observed in the pH profiles, and thus the group responsible is probably remote from the active site and the effect on activity is transmitted through the protein by a conformational change.


Subject(s)
Ascaris suum/enzymology , Catalytic Domain , Malate Dehydrogenase/chemistry , Malate Dehydrogenase/metabolism , Models, Chemical , Animals , Arginine/genetics , Ascaris suum/genetics , Aspartic Acid/genetics , Catalytic Domain/genetics , Deuterium Exchange Measurement , Hydrogen-Ion Concentration , Kinetics , Lysine/genetics , NAD/chemistry , NAD/metabolism , Phenylalanine/genetics , Spectrophotometry , Substrate Specificity , Tyrosine/genetics
12.
Biochemistry ; 42(32): 9712-21, 2003 Aug 19.
Article in English | MEDLINE | ID: mdl-12911313

ABSTRACT

The kinetic mechanism of activation of the mitochondrial NAD-malic enzyme from the parasitic roundworm Ascaris suum has been studied using a steady-state kinetic approach. The following conclusions are suggested. First, malate and fumarate increase the activity of the enzyme in both reaction directions as a result of binding to separate allosteric sites, i.e., sites that exist in addition to the active site. The binding of malate and fumarate is synergistic with the K(act) decreasing by >or=10-fold at saturating concentrations of the other activator. Second, the presence of the activators decreases the K(m) for pyruvate 3-4-fold, and the K(i) (Mn) >or=20-fold in the direction of reductive carboxylation; similar effects are obtained with fumarate in the direction of oxidative decarboxylation. The greatest effect of the activators is thus expressed at low reactant concentrations, i.e., physiologic concentrations of reactant, where activation of >or=15-fold is observed. A recent crystallographic structure of the human mitochondrial NAD malic enzyme [13] shows fumarate bound to an allosteric site. Site-directed mutagenesis was used to change R105, homologous to R91 in the fumarate activator site of the human enzyme, to alanine. The R105A mutant enzyme exhibits the same maximum rate and V/K(NAD) as does the wild-type enzyme, but 7-8-fold decrease in both V/K(malate) and V/K(Mg), indicating the importance of this residue in the activator site. In addition, neither fumarate nor malate activates the enzyme in either reaction direction. Finally, a change in K143 (a residue in a positive pocket adjacent to that which contains R105), to alanine results in an increase in the K(act) for malate by about an order of magnitude such that it is now of the same magnitude as the K(m) for malate. The K143A mutant enzyme also exhibits an increase in the K(act) for fumarate (in the absence of malate) from 200 microM to about 25 mM.


Subject(s)
Ascaris suum/enzymology , Fumarates/metabolism , Malate Dehydrogenase/metabolism , Malates/metabolism , Allosteric Site , Amino Acid Sequence , Amino Acid Substitution , Animals , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Fumarates/chemistry , Fumarates/pharmacology , Humans , Kinetics , Malate Dehydrogenase/genetics , Malates/chemistry , Malates/pharmacology , Molecular Sequence Data , Protein Binding , Pyruvates/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Spectrometry, Fluorescence/methods
13.
J Biol Chem ; 278(39): 38051-8, 2003 Sep 26.
Article in English | MEDLINE | ID: mdl-12853453

ABSTRACT

The crystal structure of the mitochondrial NAD-malic enzyme from Ascaris suum, in a quaternary complex with NADH, tartronate, and magnesium has been determined to 2.0-A resolution. The structure closely resembles the previously determined structure of the same enzyme in binary complex with NAD. However, a significant difference is observed within the coenzyme-binding pocket of the active site with the nicotinamide ring of NADH molecule rotating by 198 degrees over the C-1-N-1 bond into the active site without causing significant movement of the other catalytic residues. The implications of this conformational change in the nicotinamide ring to the catalytic mechanism are discussed. The structure also reveals a binding pocket for the divalent metal ion in the active site and a binding site for tartronate located in a highly positively charged environment within the subunit interface that is distinct from the active site. The tartronate binding site, presumably an allosteric site for the activator fumarate, shows striking similarities and differences with the activator site of the human NAD-malic enzyme that has been reported recently. Thus, the structure provides additional insights into the catalytic as well as the allosteric mechanisms of the enzyme.


Subject(s)
Ascaris suum/enzymology , Helminth Proteins/chemistry , Malate Dehydrogenase/chemistry , Amino Acid Sequence , Animals , Binding Sites , Catalysis , Crystallography, X-Ray , Molecular Sequence Data , NAD/metabolism , Protein Conformation , Tartronates/metabolism
15.
Biochemistry ; 41(40): 12193-9, 2002 Oct 08.
Article in English | MEDLINE | ID: mdl-12356321

ABSTRACT

Tartrate dehydrogenase catalyzes the divalent metal ion- and NAD-dependent oxidative decarboxylation of D-malate to yield CO(2), pyruvate, and NADH. The enzyme also catalyzes the metal ion-dependent oxidation of (+)-tartrate to yield oxaloglycolate and NADH. pH-rate profiles and isotope effects were measured to probe the mechanism of this unique enzyme. Data suggest a general base mechanism with likely general acid catalysis in the oxidative decarboxylation of D-malate. Of interest, the mechanism of oxidative decarboxylation of D-malate is stepwise with NAD(+) or the more oxidizing thio-NAD(+). The mechanism does not become concerted with the latter as observed for the malic enzyme, which catalyzes the oxidative decarboxylation of L-malate [Karsten, W. E., and Cook, P. F. (1994) Biochemistry 33, 2096-2103]. It appears the change in mechanism observed with malic enzyme is specific to its transition state structure and not a generalized trait of metal ion- and NAD(P)-dependent beta-hydroxy acid oxidative decarboxylases. The V/K(malate) pH-rate profile decreases at low and high pH and exhibits pK(a) values of about 6.3 and 8.3, while that for V/K(tartrate) (measured from pH 7.5 to pH 9) exhibits a pK(a) of 8.6 on the basic side. A single pK(a) of 6.3 is observed on the acid side of the V(max) pH profile, but the pK(a) seen on the basic side of the V/K pH profiles is not observed in the V(max) pH profiles. Data suggest the requirement for a general base that accepts a proton from the 2-hydroxyl group of either substrate to facilitate hydride transfer. A second enzymatic group is also required protonated for optimum binding of substrates and may also function as a general acid to donate a proton to the enolpyruvate intermediate to form pyruvate. The (13)C isotope effect, measured on the decarboxylation of D-malate using NAD(+) as the dinucleotide substrate, decreases from a value of 1.0096 +/- 0.0006 with D-malate to 1.00787 +/- 0.00006 with D-malate-2-d, suggesting a stepwise mechanism for the oxidative decarboxylation of D-malate. Using thio-NAD(+) as the dinucleotide substrate the (13)C isotope effects are 1.0034 +/- 0.0007 and 1.0027 +/- 0.0002 with D-malate and D-malate-2-d, respectively.


Subject(s)
Alcohol Oxidoreductases/metabolism , Malates/metabolism , NAD/analogs & derivatives , NAD/metabolism , Carbon Isotopes/metabolism , Catalysis , Deuterium/metabolism , Hydrogen-Ion Concentration , Kinetics , Oxaloacetic Acid/metabolism , Pseudomonas putida/enzymology , Pseudomonas putida/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...