Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 12: 485-496, 2021.
Article in English | MEDLINE | ID: mdl-34104625

ABSTRACT

We study interface properties of CoPcF x and FePcFx (x = 0 or 16) on niobium-doped SrTiO3(100) surfaces using mainly X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. For all studied molecules, a rather complex, bidirectional charge transfer with the oxide substrate was observed, involving both the macrocycle and the central metal atom. For molecules of the first monolayer, an electron transfer to the central metal atom is concluded from transition metal 2p core level photoemission spectra. The number of interacting molecules in the first monolayer on the oxide surface depends on the central metal atom of the phthalocyanine, whereas the substrate preparation has minor influence on the interaction between CoPc and SrTiO3(100). Differences of the interaction mechanism to related TiO2 surfaces are discussed.

2.
Molecules ; 24(24)2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31847299

ABSTRACT

Interface properties of iron phthalocyanine (FePc) and perfluorinated iron phthalocyanine (FePcF16) on rutile TiO2(100) and TiO2(110) surfaces were studied using X-ray photoemission spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and low-energy electron diffraction (LEED). It is demonstrated that the interaction strength at the interfaces is considerably affected by the detailed preparation procedure. Weak interactions were observed for all studied interfaces between FePc or FePcF16 and rutile, as long as the substrate was exposed to oxygen during the annealing steps of the preparation procedure. The absence of oxygen in the last annealing step only had almost no influence on interface properties. In contrast, repeated substrate cleaning cycles performed in the absence of oxygen resulted in a more reactive, defect-rich substrate surface. On such reactive surfaces, stronger interactions were observed, including the cleavage of some C-F bonds of FePcF16.


Subject(s)
Ferrous Compounds/chemistry , Indoles/chemistry , Titanium/chemistry , Halogenation , Molecular Structure , Photoelectron Spectroscopy , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...