Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrasonics ; 52(1): 93-102, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21783221

ABSTRACT

Resolution and penetration are primary criteria for image quality of diagnostic ultrasound. In theory (and usually in practice), the maximum depth of imaging in a tissue increases as power (pressure) is increased. Alternatively, at a particular effective penetration, an increased power may be used to allow a higher ultrasound frequency for higher resolution and tissue contrast. Recently, Karagoz and Kartal proposed a safety parameter for thermal bioeffects of diagnostic ultrasound; that is, SUT (safe use time). The SUT model is constructed to determine how long one piece of tissue can be insonated safely according to a threshold exposure. Also, Karagoz and Kartal suggested that an increase in acoustic intensity beyond the current US Food and Drug Administration (FDA) limit of intensity can be theoretically possible by using SUT model while staying within the safe limit. The present study was motivated particularly by the goals of higher resolution and/or deeper penetration by using SUT model. The results presented here suggest that the safe use of higher exposure levels than currently allowed by the FDA may be possible for obtaining substantial improvements in penetration depth and/or resolution. Also, the study reveals that image quality can be functionally related to exposure time in addition to acoustic energy and frequency.


Subject(s)
Image Enhancement/methods , Ultrasonography/methods , Acoustics , Algorithms , Computer Simulation , Equipment Safety , Humans , Models, Theoretical , United States , United States Food and Drug Administration
2.
Ultrasound Med Biol ; 32(5): 741-50, 2006 May.
Article in English | MEDLINE | ID: mdl-16677933

ABSTRACT

Previously, the temperature rise (deltaT) caused by diagnostic ultrasound and the AUIM/NEMA-defined thermal indices were examined to evaluate whether these indices were reasonable indicators of potential bioeffects due to ultrasound heating in the absence of a residual temperature rise (RTR). In our study, deltaT induced by diagnostic ultrasound exposures was estimated in the presence of an RTR using the Bioheat Transfer Equation. To evaluate deltaT/TIS in the presence of an RTR, 11 frequencies, eight cooling times, eight insonation times for the second ultrasound examination, and three source powers for a circular aperture (A(aprt)< or = 1 cm2) were investigated. In our comparison of the ratios of deltaT/TIS in the absence and presence of an RTR, a higher deltaT/TIS value was obtained in the examination with the RTR. We showed that the deltaT/TIS value is equal to 2.88 in the presence of an RTR, whereas the deltaT/TIS value without the RTR equals 1.90. In the presence of the RTR, although the TIS does not inform the user of higher ultrasound heating due to TIS values that do not exceed 1.00, deltaT reaches 2.62 degrees C, and the deltaT without the RTR reaches 1.68 degrees C in the case of a TIS value that does not exceed 1.00. These results suggest that, for nonscanned mode situations where soft tissue is insonated, the TIS should not be regarded as a reliable indicator of potential bioeffects due to ultrasound heating in the presence of the RTR. Our study also indicates the necessity for a new indicator that provides the clinical user with accurate in vivo temperature rise feedback (possibly even true deltaT), and includes adding an exposure time component to the Bio-Heat Equation model.


Subject(s)
Connective Tissue/diagnostic imaging , Ultrasonography, Doppler/adverse effects , Biomechanical Phenomena , Connective Tissue/physiology , Hot Temperature , Humans , Models, Biological , Temperature , Time Factors
3.
Ultrasound Med Biol ; 31(12): 1665-72, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16344128

ABSTRACT

In recent theoretical studies, the temperature rise produced by diagnostic ultrasound was estimated by solving the Bioheat Transfer Equation (BHTE) but ignoring the initial temperature rise. The temperature rise was determined in our study by the BHTE including an initial temperature rise. We discuss how the initial temperature rise occurs during an ultrasound examination, and how the initial temperature rise affects subsequent ultrasound heating. We theoretically show that the temperature rise produced by the ultrasound examination (exposure time of 500 s) in a tissue sample having an initial temperature rise was higher than that in a tissue sample with no initial temperature rise that was exposed to ultrasound (exposure time of 1200 s). The theoretical results for these two cases were 5.64 degrees C and 3.58 degrees C, respectively. In our experimental study, the highest temperature rise was measured in the presence of an initial temperature rise as in the theoretical study under the same exposure conditions. Mean temperature rises for tissue without an initial temperature rise and for tissue with an initial temperature rise were 2.42 +/- 0.13 degrees C and 3.62 +/- 0.17 degrees C, respectively. Both theoretical and experimental studies show that unless the initial temperature rise produced by the first ultrasound examination decreases to 0 degrees C, the next ultrasound examination on the same tissue sample may cause the temperature rise to be higher than expected.


Subject(s)
Hot Temperature , Models, Theoretical , Ultrasonography/adverse effects , Animals , Biophysical Phenomena , Biophysics , Female , Models, Animal , Perfusion , Rats , Rats, Wistar , Safety , Temperature , Thermodynamics , Time Factors , Ultrasonography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...