Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 137(14): 1945-1958, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33512417

ABSTRACT

Although BCL-xL is critical to the survival of mature erythrocytes, it is still unclear whether other antiapoptotic molecules mediate survival during earlier stages of erythropoiesis. Here, we demonstrate that erythroid-specific Mcl1 deletion results in embryonic lethality beyond embryonic day 13.5 as a result of severe anemia caused by a lack of mature red blood cells (RBCs). Mcl1-deleted embryos exhibit stunted growth, ischemic necrosis, and decreased RBCs in the blood. Furthermore, we demonstrate that MCL-1 is only required during early definitive erythropoiesis; during later stages, developing erythrocytes become MCL-1 independent and upregulate the expression of BCL-xL. Functionally, MCL-1 relies upon its ability to prevent apoptosis to promote erythroid development because codeletion of the proapoptotic effectors Bax and Bak can overcome the requirement for MCL-1 expression. Furthermore, ectopic expression of human BCL2 in erythroid progenitors can compensate for Mcl1 deletion, indicating redundancy between these 2 antiapoptotic family members. These data clearly demonstrate a requirement for MCL-1 in promoting survival of early erythroid progenitors.


Subject(s)
Erythropoiesis , Gene Deletion , Gene Expression Regulation, Developmental , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Anemia/genetics , Anemia/pathology , Animals , Apoptosis , Cells, Cultured , Embryo Loss/genetics , Embryo Loss/pathology , Erythrocytes/pathology , Erythroid Cells/pathology , Humans , Mice, Inbred C57BL
2.
Am J Physiol Gastrointest Liver Physiol ; 318(3): G479-G489, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31790273

ABSTRACT

During intestinal inflammation, immature cells within the intestinal crypt are called upon to replenish lost epithelial cell populations, promote tissue regeneration, and restore barrier integrity. Inflammatory mediators including TH1/TH17-associated cytokines influence tissue health and regenerative processes, yet how these cytokines directly influence the colon crypt epithelium and whether the crypt remains responsive to these cytokines during active damage and repair, remain unclear. Here, using laser-capture microdissection and primary colon organoid culture, we show that the cytokine milieu regulates the ability of the colonic crypt epithelium to participate in proinflammatory signaling. IFN-γ induces the TH1-recruiting, proinflammatory chemokine CXCL10/IP10 in primary murine intestinal crypt epithelium. CXCL10 was also induced in colonic organoids derived from mice with active, experimentally induced colitis, suggesting that the crypt can actively secrete CXCL10 in select cytokine environments during colitis. Colon expression of cxcl10 further increased during infectious and noninfectious colitis in Il17a-/- mice, demonstrating that IL-17A exerts a negative effect on CXCL10 in vivo. Furthermore, IL-17A directly antagonized CXCL10 production in ex vivo organoid cultures derived from healthy murine colons. Interestingly, direct antagonism of CXCL10 was not observed in organoids derived from colitic mouse colons bearing active lesions. These data, highlighting the complex interplay between the cytokine milieu and crypt epithelia, demonstrate proinflammatory chemokines can be induced within the colonic crypt and suggest the crypt remains responsive to cytokine modulation during inflammation.NEW & NOTEWORTHY Upon damage, the intestinal epithelium regenerates to restore barrier function. Here we observe that the local colonic cytokine milieu controls the production of procolitic chemokines within the crypt base and colon crypts remain responsive to cytokines during inflammation. IFN-γ promotes, while IL-17 antagonizes, CXCL10 production in healthy colonic crypts, while responses to cytokines differ in inflamed colon epithelium. These data reveal novel insight into colon crypt responses and inflammation-relevant alterations in signaling.


Subject(s)
Chemokine CXCL10/metabolism , Colitis/metabolism , Colon/drug effects , Interferon-gamma/pharmacology , Interleukin-17/metabolism , Intestinal Mucosa/drug effects , Animals , Cellular Microenvironment , Chemokine CXCL10/genetics , Colitis/genetics , Colitis/immunology , Colitis/pathology , Colon/immunology , Colon/metabolism , Colon/pathology , Disease Models, Animal , Interleukin-17/deficiency , Interleukin-17/genetics , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , STAT1 Transcription Factor/metabolism , Signal Transduction , Tissue Culture Techniques , Transcription Factor RelA/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
3.
Gene ; 677: 299-307, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30121380

ABSTRACT

Chronic intestinal inflammation predisposes patients with Inflammatory Bowel Disease (IBD) to Colitis-Associated Cancer (CAC). In the setting of chronic inflammation, microsatellite instability (MSI) results from early loss of DNA damage response (DDR) genes, ultimately leading to tumor formation. Despite continued efforts to improve early detection of high risk, pre-dysplastic regions in IBD patients, current macroscopic and genetic surveillance modalities remain limited. Therefore, understanding the regulation of key DDR genes in the progression from colitis to cancer may improve molecular surveillance of CAC. To evaluate DDR gene regulation in the transition from colitis to tumorigenesis, we utilized the well-established Azoxymethane/Dextran Sodium Sulfate (AOM/DSS) pre-clinical murine model of CAC in C57BL/6 mice. In order to assess colonic tumor burden in the setting of mutagen and intestinal irritation, tumors were visualized and graded in real time through high-resolution murine colonoscopy. Upon sacrifice, colons were opened and assessed for macroscopic tumor via high magnification surgical lenses (HMSL). Tissues were then sectioned and separated into groups based on the presence or absence of macroscopically visible tumor. Critical DDR genes were evaluated by semi-quantitative RT-PCR. Interestingly, colon tissue with macroscopically visible tumor (MVT) and colon tissue prior to observable tumor (the non-macroscopically visible tumor-developing group, NMVT) were identical in reduced mRNA expression of mlh1, anapc1, and ercc4 relative to colitic mice without mutagen, or those receiving mutagen alone. Colitis alone was sufficient to reduce colonic ercc4 expression when compared to NMVT mice. Therefore, reduced ercc4 expression may mark the early transition to CAC in a pre-clinical model, with expression reduced prior to the onset of observable tumor. Moreover, the expression of select DDR genes inversely correlated with chronicity of inflammatory disease. These data suggest ercc4 expression may define early stages in the progression to CAC.


Subject(s)
Carcinogenesis/genetics , Colitis/genetics , Colitis/pathology , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , DNA Damage/genetics , Animals , Azoxymethane/pharmacology , Carcinogenesis/pathology , Colon/drug effects , Colon/pathology , DNA Damage/drug effects , Dextran Sulfate/pharmacology , Disease Models, Animal , Disease Progression , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Inflammation/genetics , Inflammation/pathology , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Intestines/drug effects , Intestines/pathology , Male , Mice , Mice, Inbred C57BL , Microsatellite Instability/drug effects , Signal Transduction/drug effects , Signal Transduction/genetics
4.
PLoS One ; 11(6): e0157092, 2016.
Article in English | MEDLINE | ID: mdl-27275606

ABSTRACT

Antimicrobial chemokines (AMCs) are a recently described family of host defense peptides that play an important role in protecting a wide variety of organisms from bacterial infection. Very little is known about the bacterial targets of AMCs or factors that influence bacterial susceptibility to AMCs. In an effort to understand how bacterial pathogens resist killing by AMCs, we screened Yersinia pseudotuberculosis transposon mutants for those with increased binding to the AMCs CCL28 and CCL25. Mutants exhibiting increased binding to AMCs were subjected to AMC killing assays, which revealed their increased sensitivity to chemokine-mediated cell death. The majority of the mutants exhibiting increased binding to AMCs contained transposon insertions in genes related to lipopolysaccharide biosynthesis. A particularly strong effect on susceptibility to AMC mediated killing was observed by disruption of the hldD/waaF/waaC operon, necessary for ADP-L-glycero-D-manno-heptose synthesis and a complete lipopolysaccharide core oligosaccharide. Periodate oxidation of surface carbohydrates also enhanced AMC binding, whereas enzymatic removal of surface proteins significantly reduced binding. These results suggest that the structure of Y. pseudotuberculosis LPS greatly affects the antimicrobial activity of AMCs by shielding a protein ligand on the bacterial cell surface.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Chemokines, CC/pharmacology , Drug Resistance, Bacterial , Lipopolysaccharides , Operon , Yersinia pseudotuberculosis , Humans , Lipopolysaccharides/biosynthesis , Lipopolysaccharides/genetics , Yersinia pseudotuberculosis/enzymology , Yersinia pseudotuberculosis/genetics , Yersinia pseudotuberculosis/growth & development , Yersinia pseudotuberculosis Infections/genetics , Yersinia pseudotuberculosis Infections/metabolism
5.
Genome Announc ; 1(6)2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24285667

ABSTRACT

Mycobacteriophages infect members of the Mycobacterium genus in the phylum Actinobacteria and exhibit remarkable diversity. Genome analysis groups the thousands of known mycobacteriophages into clusters, of which the B1 subcluster is currently the third most populous. We report the complete genome sequences of five additional members of the B1 subcluster.

SELECTION OF CITATIONS
SEARCH DETAIL
...