Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
J Comp Neurol ; 532(5): e25620, 2024 May.
Article in English | MEDLINE | ID: mdl-38733146

ABSTRACT

We used diverse methods to characterize the role of avian lateral spiriform nucleus (SpL) in basal ganglia motor function. Connectivity analysis showed that SpL receives input from globus pallidus (GP), and the intrapeduncular nucleus (INP) located ventromedial to GP, whose neurons express numerous striatal markers. SpL-projecting GP neurons were large and aspiny, while SpL-projecting INP neurons were medium sized and spiny. Connectivity analysis further showed that SpL receives inputs from subthalamic nucleus (STN) and substantia nigra pars reticulata (SNr), and that the SNr also receives inputs from GP, INP, and STN. Neurochemical analysis showed that SpL neurons express ENK, GAD, and a variety of pallidal neuron markers, and receive GABAergic terminals, some of which also contain DARPP32, consistent with GP pallidal and INP striatal inputs. Connectivity and neurochemical analysis showed that the SpL input to tectum prominently ends on GABAA receptor-enriched tectobulbar neurons. Behavioral studies showed that lesions of SpL impair visuomotor behaviors involving tracking and pecking moving targets. Our results suggest that SpL modulates brainstem-projecting tectobulbar neurons in a manner comparable to the demonstrated influence of GP internus on motor thalamus and of SNr on tectobulbar neurons in mammals. Given published data in amphibians and reptiles, it seems likely the SpL circuit represents a major direct pathway-type circuit by which the basal ganglia exerts its motor influence in nonmammalian tetrapods. The present studies also show that avian striatum is divided into three spatially segregated territories with differing connectivity, a medial striato-nigral territory, a dorsolateral striato-GP territory, and the ventrolateral INP motor territory.


Subject(s)
Basal Ganglia , Neural Pathways , Animals , Basal Ganglia/metabolism , Neural Pathways/physiology , Neural Pathways/chemistry , Male , Neurons/metabolism , Globus Pallidus/metabolism , Globus Pallidus/chemistry , Globus Pallidus/anatomy & histology
2.
J Comp Neurol ; 528(4): 597-623, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31531866

ABSTRACT

The sensory-motor division of the avian arcopallium receives parallel inputs from primary and high-order pallial areas of sensory and vocal control pathways, and sends a prominent descending projection to ascending and premotor, subpallial stages of these pathways. While this organization is well established for the auditory and trigeminal systems, the arcopallial subdivision related to the tectofugal visual system and its descending projection to the optic tectum (TeO) has been less investigated. In this study, we charted the arcopallial area displaying tectofugal visual responses and by injecting neural tracers, we traced its connectional anatomy. We found visual motion-sensitive responses in a central region of the dorsal (AD) and intermediate (AI) arcopallium, in between previously described auditory and trigeminal zones. Blocking the ascending tectofugal sensory output, canceled these visual responses in the arcopallium, verifying their tectofugal origin. Injecting PHA-L into the visual, but not into the auditory AI, revealed a massive projection to tectal layer 13 and other tectal related areas, sparing auditory, and trigeminal ones. Conversely, CTB injections restricted to TeO retrogradely labeled neurons confined to the visual AI. These results show that the AI zone receiving tectofugal inputs sends top-down modulations specifically directed to tectal targets, just like the auditory and trigeminal AI zones project back to their respective subpallial sensory and premotor areas, as found by previous studies. Therefore, the arcopallium seems to be organized in a parallel fashion, such that in spite of expected cross-modal integration, the different sensory-motor loops run through separate subdivisions of this structure.


Subject(s)
Columbidae/physiology , Photic Stimulation/methods , Sensorimotor Cortex/physiology , Visual Pathways/physiology , Animals , Columbidae/anatomy & histology , Female , Male , Sensorimotor Cortex/anatomy & histology , Sensorimotor Cortex/chemistry , Visual Pathways/anatomy & histology , Visual Pathways/chemistry
3.
Neuron ; 104(4): 765-780.e3, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31587918

ABSTRACT

How do neurons in orofacial motor cortex (MCtx) orchestrate behaviors? We show that focal activation of MCtx corticobulbar neurons evokes behaviorally relevant concurrent movements of the forelimb, jaw, nose, and vibrissae. The projections from different locations in MCtx form gradients of boutons across premotor nuclei spinal trigeminal pars oralis (SpVO) and interpolaris rostralis (SpVIr). Furthermore, retrograde viral tracing from muscles that control orofacial actions shows that these premotor nuclei segregate their outputs. In the most dramatic case, both SpVO and SpVIr are premotor to forelimb and vibrissa muscles, while only SpVO is premotor to jaw muscles. Functional confirmation of the superimposed control by MCtx was obtained through selective optogenetic activation of corticobulbar neurons on the basis of their preferential projections to SpVO versus SpVIr. We conclude that neighboring projection neurons in orofacial MCtx form parallel pathways to distinct pools of trigeminal premotor neurons that coordinate motor actions into a behavior.


Subject(s)
Efferent Pathways/physiology , Motor Cortex/physiology , Movement/physiology , Neurons/physiology , Trigeminal Nuclei/physiology , Animals , Behavior, Animal/physiology , Face/innervation , Female , Mice , Motor Activity/physiology
4.
Nat Methods ; 16(4): 341-350, 2019 04.
Article in English | MEDLINE | ID: mdl-30858600

ABSTRACT

Brain atlases enable the mapping of labeled cells and projections from different brains onto a standard coordinate system. We address two issues in the construction and use of atlases. First, expert neuroanatomists ascertain the fine-scale pattern of brain tissue, the 'texture' formed by cellular organization, to define cytoarchitectural borders. We automate the processes of localizing landmark structures and alignment of brains to a reference atlas using machine learning and training data derived from expert annotations. Second, we construct an atlas that is active; that is, augmented with each use. We show that the alignment of new brains to a reference atlas can continuously refine the coordinate system and associated variance. We apply this approach to the adult murine brainstem and achieve a precise alignment of projections in cytoarchitecturally ill-defined regions across brains from different animals.


Subject(s)
Brain Mapping/methods , Brain/diagnostic imaging , Computational Biology/methods , Image Processing, Computer-Assisted/methods , Algorithms , Animals , Brain/anatomy & histology , Brain Stem/diagnostic imaging , Machine Learning , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred C57BL , Motor Neurons , Neuroanatomy , Neurons , Probability , Spinal Cord/diagnostic imaging
5.
Proc Natl Acad Sci U S A ; 115(32): E7615-E7623, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30026198

ABSTRACT

The optic tectum (TeO), or superior colliculus, is a multisensory midbrain center that organizes spatially orienting responses to relevant stimuli. To define the stimulus with the highest priority at each moment, a network of reciprocal connections between the TeO and the isthmi promotes competition between concurrent tectal inputs. In the avian midbrain, the neurons mediating enhancement and suppression of tectal inputs are located in separate isthmic nuclei, facilitating the analysis of the neural processes that mediate competition. A specific subset of radial neurons in the intermediate tectal layers relay retinal inputs to the isthmi, but at present it is unclear whether separate neurons innervate individual nuclei or a single neural type sends a common input to several of them. In this study, we used in vitro neural tracing and cell-filling experiments in chickens to show that single neurons innervate, via axon collaterals, the three nuclei that comprise the isthmotectal network. This demonstrates that the input signals representing the strength of the incoming stimuli are simultaneously relayed to the mechanisms promoting both enhancement and suppression of the input signals. By performing in vivo recordings in anesthetized chicks, we also show that this common input generates synchrony between both antagonistic mechanisms, demonstrating that activity enhancement and suppression are closely coordinated. From a computational point of view, these results suggest that these tectal neurons constitute integrative nodes that combine inputs from different sources to drive in parallel several concurrent neural processes, each performing complementary functions within the network through different firing patterns and connectivity.


Subject(s)
Behavior, Animal/physiology , Chickens/physiology , Neurons/physiology , Superior Colliculi/physiology , Visual Pathways/physiology , Animals , Neuroanatomical Tract-Tracing Techniques/methods , Photic Stimulation , Superior Colliculi/cytology
6.
Neuroscience ; 368: 152-170, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28843993

ABSTRACT

The world view of rodents is largely determined by sensation on two length scales. One is within the animal's peri-personal space; sensorimotor control on this scale involves active movements of the nose, tongue, head, and vibrissa, along with sniffing to determine olfactory clues. The second scale involves the detection of more distant space through vision and audition; these detection processes also impact repositioning of the head, eyes, and ears. Here we focus on orofacial motor actions, primarily vibrissa-based touch but including nose twitching, head bobbing, and licking, that control sensation at short, peri-personal distances. The orofacial nuclei for control of the motor plants, as well as primary and secondary sensory nuclei associated with these motor actions, lie within the hindbrain. The current data support three themes: First, the position of the sensors is determined by the summation of two drive signals, i.e., a fast rhythmic component and an evolving orienting component. Second, the rhythmic component is coordinated across all orofacial motor actions and is phase-locked to sniffing as the animal explores. Reverse engineering reveals that the preBötzinger inspiratory complex provides the reset to the relevant premotor oscillators. Third, direct feedback from somatosensory trigeminal nuclei can rapidly alter motion of the sensors. This feedback is disynaptic and can be tuned by high-level inputs. A holistic model for the coordination of orofacial motor actions into behaviors will encompass feedback pathways through the midbrain and forebrain, as well as hindbrain areas.


Subject(s)
Behavior, Animal/physiology , Brain Stem/physiology , Facial Nucleus/physiology , Motor Activity/physiology , Mouth/physiology , Neural Pathways/physiology , Rodentia/physiology , Sensation/physiology , Touch Perception/physiology , Vibrissae/physiology , Animals , Mouth/innervation
7.
J Comp Neurol ; 525(14): 3044-3071, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28614906

ABSTRACT

The auditory ascending system contains parallel pathways in vertebrate brains. In chickens (Gallus gallus), three pathways arise from nucleus laminaris (NL), nucleus angularis (NA), and regio intermedius (RI) in the brainstem, innervating three subdivisions of the nucleus mesencephalicus lateralis pars dorsalis (MLd) in the midbrain. The current study reveals the segregation of these pathways in their subsequent projections to the nucleus ovoidalis (Ov) in the thalamus. Based on cytoarchitecture and myelin distribution, we identified seven Ov subregions, including five neuronal clusters within the Ov proper, the nucleus semilunaris parovoidalis (SPO), and the circum-ovoidalis (cOv). Immunocytochemistry further revealed that a ventromedial cluster of the Ov proper (Ovvm) contains unique cell types expressing α8 subunit nicotinic acetylcholine receptor, while SPO and cOv are characterized with expression of calcitonin-gene-related peptide and cholecystokinin. Tract tracing studies demonstrated that Ovvm is a major target of the NL-recipient zone of MLd, while the RI-recipient zone of MLd predominantly projects to a ventrolateral cluster of the Ov proper. Afferent inputs to the remaining regions of the Ov proper mostly arise from the NA-recipient zone of MLd. SPO and cOv receive a projection from the surrounding areas of MLd, named the nucleus intercollicularis. Importantly, the Ov proper, SPO and cOv all project to the Field L2 in the forebrain, the avian auditory cortex. Taken together, these results demonstrate that the avian auditory thalamus is a structurally and functionally heterogeneous structure, implicating an important role in generating novel representations for specific acoustic features.


Subject(s)
Chickens/anatomy & histology , Thalamic Nuclei/anatomy & histology , Animals , Auditory Pathways/anatomy & histology , Auditory Pathways/metabolism , Avian Proteins/metabolism , Calcitonin Gene-Related Peptide/metabolism , Cell Size , Chickens/metabolism , Cholecystokinin/metabolism , Immunohistochemistry , Mesencephalon/anatomy & histology , Mesencephalon/metabolism , Neuroanatomical Tract-Tracing Techniques , Neurons/cytology , Neurons/metabolism , Receptors, Nicotinic/metabolism , Thalamic Nuclei/metabolism
8.
Philos Trans R Soc Lond B Biol Sci ; 370(1684)2015 Dec 19.
Article in English | MEDLINE | ID: mdl-26554047

ABSTRACT

The organization of the non-mammalian forebrain had long puzzled neurobiologists. Unlike typical mammalian brains, the telencephalon is not organized in a laminated 'cortical' manner, with distinct cortical areas dedicated to individual sensory modalities or motor functions. The two major regions of the telencephalon, the basal ventricular ridge (BVR) and the dorsal ventricular ridge (DVR), were loosely referred to as being akin to the mammalian basal ganglia. The telencephalon of non-mammalian vertebrates appears to consist of multiple 'subcortical' groups of cells. Analysis of the nuclear organization of the avian brain, its connections, molecular properties and physiology, and organization of its pattern of circuitry and function relative to that of mammals, collectively referred to as 'evolutionary connectomics', revealed that only a restricted portion of the BVR is homologous to the basal ganglia of mammals. The remaining dorsal regions of the DVR, wulst and arcopallium of the avian brain contain telencephalic inputs and outputs remarkably similar to those of the individual layers of the mammalian 'neocortex', hippocampus and amygdala, with instances of internuclear connections strikingly similar to those found between cortical layers and within radial 'columns' in the mammalian sensory and motor cortices. The molecular properties of these 'nuclei' in birds and reptiles are similar to those of the corresponding layers of the mammalian neocortex. The fundamental pathways and cell groups of the auditory, visual and somatosensory systems of the thalamus and telencephalon are homologous at the cellular, circuit, network and gene levels, and are of great antiquity. A proposed altered migration of these homologous neurons and circuits during development is offered as a mechanism that may account for the altered configuration of mammalian telencephalae.


Subject(s)
Biological Evolution , Neocortex/anatomy & histology , Vertebrates/anatomy & histology , Vertebrates/genetics , Animals
9.
J Comp Neurol ; 523(6): 921-42, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25503925

ABSTRACT

Sensorimotor processing relies on hierarchical neuronal circuits to mediate sensory-driven behaviors. In the mouse vibrissa system, trigeminal brainstem circuits are thought to mediate the first stage of vibrissa scanning control via sensory feedback that provides reflexive protraction in response to stimulation. However, these circuits are not well defined. Here we describe a complete disynaptic sensory receptor-to-muscle circuit for positive feedback in vibrissa movement. We identified a novel region of trigeminal brainstem, spinal trigeminal nucleus pars muralis, which contains a class of vGluT2+ excitatory projection neurons involved in vibrissa motor control. Complementary single- and dual-labeling with traditional and virus tracers demonstrate that these neurons both receive primary inputs from vibrissa sensory afferent fibers and send monosynaptic connections to facial nucleus motoneurons that directly innervate vibrissa musculature. These anatomical results suggest a general role of disynaptic architecture in fast positive feedback for motor output that drives active sensation.


Subject(s)
Afferent Pathways/physiology , Brain Stem/cytology , Feedback, Sensory/physiology , Neurons/physiology , Synapses/physiology , Vibrissae/innervation , Animals , Brain Stem/physiology , Cholera Toxin/metabolism , Choline O-Acetyltransferase/genetics , Choline O-Acetyltransferase/metabolism , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Glycine Plasma Membrane Transport Proteins/genetics , Glycine Plasma Membrane Transport Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Reflex/physiology , Spinal Cord/cytology , Spinal Cord/physiology , Vagus Nerve/physiology , Vesicular Glutamate Transport Protein 2/genetics , Vesicular Glutamate Transport Protein 2/metabolism , Vesicular Inhibitory Amino Acid Transport Proteins/genetics , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism , Vibrissae/metabolism
10.
J Comp Neurol ; 522(7): 1445-53, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24596113

ABSTRACT

Efforts to understand nervous system structure and function have received new impetus from the federal Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. Comparative analyses can contribute to this effort by leading to the discovery of general principles of neural circuit design, information processing, and gene-structure-function relationships that are not apparent from studies on single species. We here propose to extend the comparative approach to nervous system 'maps' comprising molecular, anatomical, and physiological data. This research will identify which neural features are likely to generalize across species, and which are unlikely to be broadly conserved. It will also suggest causal relationships between genes, development, adult anatomy, physiology, and, ultimately, behavior. These causal hypotheses can then be tested experimentally. Finally, insights from comparative research can inspire and guide technological development. To promote this research agenda, we recommend that teams of investigators coalesce around specific research questions and select a set of 'reference species' to anchor their comparative analyses. These reference species should be chosen not just for practical advantages, but also with regard for their phylogenetic position, behavioral repertoire, well-annotated genome, or other strategic reasons. We envision that the nervous systems of these reference species will be mapped in more detail than those of other species. The collected data may range from the molecular to the behavioral, depending on the research question. To integrate across levels of analysis and across species, standards for data collection, annotation, archiving, and distribution must be developed and respected. To that end, it will help to form networks or consortia of researchers and centers for science, technology, and education that focus on organized data collection, distribution, and training. These activities could be supported, at least in part, through existing mechanisms at NSF, NIH, and other agencies. It will also be important to develop new integrated software and database systems for cross-species data analyses. Multidisciplinary efforts to develop such analytical tools should be supported financially. Finally, training opportunities should be created to stimulate multidisciplinary, integrative research into brain structure, function, and evolution.


Subject(s)
Brain Mapping/methods , Brain/anatomy & histology , Brain/physiology , Animals , Brain Mapping/standards , Evolution, Chemical , Gene Expression/physiology , Humans , Information Dissemination/methods , Neural Pathways/anatomy & histology , Neural Pathways/physiology , Species Specificity
11.
Brain Behav Evol ; 83(1): 1-8, 2014.
Article in English | MEDLINE | ID: mdl-24603302

ABSTRACT

Efforts to understand nervous system structure and function have received new impetus from the federal Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. Comparative analyses can contribute to this effort by leading to the discovery of general principles of neural circuit design, information processing, and gene-structure-function relationships that are not apparent from studies on single species. We here propose to extend the comparative approach to nervous system 'maps' comprising molecular, anatomical, and physiological data. This research will identify which neural features are likely to generalize across species, and which are unlikely to be broadly conserved. It will also suggest causal relationships between genes, development, adult anatomy, physiology, and, ultimately, behavior. These causal hypotheses can then be tested experimentally. Finally, insights from comparative research can inspire and guide technological development. To promote this research agenda, we recommend that teams of investigators coalesce around specific research questions and select a set of 'reference species' to anchor their comparative analyses. These reference species should be chosen not just for practical advantages, but also with regard for their phylogenetic position, behavioral repertoire, well-annotated genome, or other strategic reasons. We envision that the nervous systems of these reference species will be mapped in more detail than those of other species. The collected data may range from the molecular to the behavioral, depending on the research question. To integrate across levels of analysis and across species, standards for data collection, annotation, archiving, and distribution must be developed and respected. To that end, it will help to form networks or consortia of researchers and centers for science, technology, and education that focus on organized data collection, distribution, and training. These activities could be supported, at least in part, through existing mechanisms at NSF, NIH, and other agencies. It will also be important to develop new integrated software and database systems for cross-species data analyses. Multidisciplinary efforts to develop such analytical tools should be supported financially. Finally, training opportunities should be created to stimulate multidisciplinary, integrative research into brain structure, function, and evolution.


Subject(s)
Biological Evolution , Brain Mapping , Brain/anatomy & histology , Brain/physiology , Anatomy, Comparative , Animals , Humans , Species Specificity
12.
J Comp Neurol ; 522(10): 2377-96, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24435811

ABSTRACT

The nucleus geniculatus lateralis pars ventralis (GLv) is a prominent retinal target in all amniotes. In birds, it is in receipt of a dense and topographically organized retinal projection. The GLv is also the target of substantial and topographically organized projections from the optic tectum and the visual wulst (hyperpallium). Tectal and retinal afferents terminate homotopically within the external GLv-neuropil. Efferents from the GLv follow a descending course through the tegmentum and can be traced into the medial pontine nucleus. At present, the cells of origin of the Tecto-GLv projection are only partially described. Here we characterized the laminar location, morphology, projection pattern, and neurochemical identity of these cells by means of neural tracer injections and intracellular fillings in slice preparations and extracellular tracer injections in vivo. The Tecto-GLv projection arises from a distinct subset of layer 10 bipolar neurons, whose apical dendrites show a complex transverse arborization at the level of layer 7. Axons of these bipolar cells arise from the apical dendrites and follow a course through the optic tract to finally form very fine and restricted terminal endings inside the GLv-neuropil. Double-label experiments showed that these bipolar cells were choline acetyltransferase (ChAT)-immunoreactive. Our results strongly suggest that Tecto-GLv neurons form a pathway by which integrated tectal activity rapidly feeds back to the GLv and exerts a focal cholinergic modulation of incoming retinal inputs.


Subject(s)
Brain/cytology , Chickens/anatomy & histology , Columbidae/anatomy & histology , Neurons/cytology , Visual Pathways/cytology , Animals , Axons/metabolism , Brain/metabolism , Chickens/metabolism , Choline O-Acetyltransferase/metabolism , Columbidae/metabolism , Dendrites/metabolism , Geniculate Bodies/cytology , Geniculate Bodies/metabolism , Immunohistochemistry , Neuroanatomical Tract-Tracing Techniques , Neurons/metabolism , Superior Colliculi/cytology , Superior Colliculi/metabolism , Tissue Culture Techniques , Visual Pathways/metabolism
14.
J Comp Neurol ; 521(16): 3702-15, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23896990

ABSTRACT

We describe a set of new comprehensive, high-quality, high-resolution digital images of histological sections from the brain of male zebra finches (Taeniopygia guttata) and make them publicly available through an interactive website (http://zebrafinch.brainarchitecture.org/). These images provide a basis for the production of a dimensionally accurate and detailed digital nonstereotaxic atlas. Nissl- and myelin-stained brain sections are provided in the transverse, sagittal, and horizontal planes, with the transverse plane approximating the more traditional Frankfurt plane. In addition, a separate set of brain sections in this same plane is stained for tyrosine hydroxylase, revealing the distribution of catecholaminergic neurons (dopaminergic, noradrenergic, and adrenergic) in the songbird brain. For a subset of sagittal sections we also prepared a corresponding set of drawings, defining and annotating various nuclei, fields, and fiber tracts that are visible under Nissl and myelin staining. This atlas of the zebra finch brain is expected to become an important tool for birdsong research and comparative studies of brain organization and evolution.


Subject(s)
Brain Mapping , Brain/anatomy & histology , Image Processing, Computer-Assisted , Songbirds/anatomy & histology , Animals , Brain/metabolism , Male , Myelin Sheath/metabolism , Tyrosine 3-Monooxygenase/metabolism
16.
J Comp Neurol ; 521(8): Spc1, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23559407

ABSTRACT

The Nile grass rat (Arvicanthis niloticus) has a high proportion of cone photoreceptors (∼30-40%) compared with that in the common laboratory mouse and rat (∼1-3%) and may prove a preferable murine model with which to study cone-driven information processing in retina and primary visual centers. However, other than regions involved in circadian control, little is known about the retinorecipient structures in this rodent. We undertook a detailed analysis of the retinal projections as revealed after intravitreal injection of the anterograde tracer cholera toxin subunit B. Retinal efferents were evaluated in 45 subcortical structures. Contralateral projections were always dominant. Major contralateral inputs consisted of the suprachiasmatic nucleus, dorsolateral geniculate nucleus (dLGN), intergeniculate leaflet, ventral geniculate nucleus (magnocellular part), lateroposterior thalamic nucleus, all six pretectal nuclei, superficial layers of the superior colliculus (SC), and the main nuclei of the accessory optic system. Terminals from the contralateral eye were also localized in an unnamed field rostromedial to the dLGN as well as in the subgeniculate thalamic nucleus. Ipsilateral inputs were found mainly in the suprachiasmatic nucleus, dLGN, intergeniculate leaflet, internal sector of the magnocellular part of the ventral geniculate nucleus, olivary pretectal nucleus, and SC optic layer. Retinal afferents were not detected in the basal forebrain or the dorsal raphe nucleus. Morphometric measurements revealed that the superficial layers of the SC are disproportionately enlarged relative to other retinorecipient regions and brain size compared with rats and mice. We suggest that this reflects the selective projection of cone-driven retinal ganglion cells to the SC. J. Comp. Neurol. 521:1699-1726, 2013. © 2012 Wiley Periodicals, Inc.


Subject(s)
Retina/cytology , Superior Colliculi/anatomy & histology , Visual Pathways/physiology , Animals , Mice , Rats , Retina/physiology , Rodentia , Superior Colliculi/metabolism
18.
PLoS One ; 8(3): e58344, 2013.
Article in English | MEDLINE | ID: mdl-23520500

ABSTRACT

We present a new method for whole slide darkfield imaging. Whole Slide Imaging (WSI), also sometimes called virtual slide or virtual microscopy technology, produces images that simultaneously provide high resolution and a wide field of observation that can encompass the entire section, extending far beyond any single field of view. For example, a brain slice can be imaged so that both overall morphology and individual neuronal detail can be seen. We extended the capabilities of traditional whole slide systems and developed a prototype system for darkfield internal reflection illumination (DIRI). Our darkfield system uses an ultra-thin light-emitting diode (LED) light source to illuminate slide specimens from the edge of the slide. We used a new type of side illumination, a variation on the internal reflection method, to illuminate the specimen and create a darkfield image. This system has four main advantages over traditional darkfield: (1) no oil condenser is required for high resolution imaging (2) there is less scatter from dust and dirt on the slide specimen (3) there is less halo, providing a more natural darkfield contrast image, and (4) the motorized system produces darkfield, brightfield and fluorescence images. The WSI method sometimes allows us to image using fewer stains. For instance, diaminobenzidine (DAB) and fluorescent staining are helpful tools for observing protein localization and volume in tissues. However, these methods usually require counter-staining in order to visualize tissue structure, limiting the accuracy of localization of labeled cells within the complex multiple regions of typical neurohistological preparations. Darkfield imaging works on the basis of light scattering from refractive index mismatches in the sample. It is a label-free method of producing contrast in a sample. We propose that adapting darkfield imaging to WSI is very useful, particularly when researchers require additional structural information without the use of further staining.


Subject(s)
Brain Mapping/methods , Brain/cytology , Image Processing, Computer-Assisted/methods , Neurons/cytology , Animals , Mice , Microscopy, Fluorescence/methods
19.
Curr Biol ; 23(1): R12-5, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23305661

ABSTRACT

The evolutionary origin of the six-layered mammalian neocortex has been controversial. New data on genes with layer-specific expression in mammalian cortex have found an expression pattern in avian forebrain neurons consistent with the view that 'cortical' cells and circuits are present in all amniotes, but with different macroarchitectures in birds versus mammals.


Subject(s)
Biological Evolution , Neocortex/cytology , Vertebrates/anatomy & histology , Animals , Models, Biological , Phylogeny , Vertebrates/genetics
20.
J Comp Neurol ; 521(8): 1699-726, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23322547

ABSTRACT

The Nile grass rat (Arvicanthis niloticus) has a high proportion of cone photoreceptors (∼30-40%) compared with that in the common laboratory mouse and rat (∼1-3%) and may prove a preferable murine model with which to study cone-driven information processing in retina and primary visual centers. However, other than regions involved in circadian control, little is known about the retinorecipient structures in this rodent. We undertook a detailed analysis of the retinal projections as revealed after intravitreal injection of the anterograde tracer cholera toxin subunit B. Retinal efferents were evaluated in 45 subcortical structures. Contralateral projections were always dominant. Major contralateral inputs consisted of the suprachiasmatic nucleus, dorsolateral geniculate nucleus (dLGN), intergeniculate leaflet, ventral geniculate nucleus (magnocellular part), lateroposterior thalamic nucleus, all six pretectal nuclei, superficial layers of the superior colliculus (SC), and the main nuclei of the accessory optic system. Terminals from the contralateral eye were also localized in an unnamed field rostromedial to the dLGN as well as in the subgeniculate thalamic nucleus. Ipsilateral inputs were found mainly in the suprachiasmatic nucleus, dLGN, intergeniculate leaflet, internal sector of the magnocellular part of the ventral geniculate nucleus, olivary pretectal nucleus, and SC optic layer. Retinal afferents were not detected in the basal forebrain or the dorsal raphe nucleus. Morphometric measurements revealed that the superficial layers of the SC are disproportionately enlarged relative to other retinorecipient regions and brain size compared with rats and mice. We suggest that this reflects the selective projection of cone-driven retinal ganglion cells to the SC.


Subject(s)
Retina/cytology , Superior Colliculi/physiology , Visual Cortex/physiology , Age Factors , Animals , Brain Mapping , Cholera Toxin/metabolism , Female , Fluorescent Dyes/metabolism , Functional Laterality , Male , Mice , Mice, Inbred C57BL , Neurons/physiology , Neurons/ultrastructure , Rats , Rats, Wistar , Retina/physiology , Rodentia , Species Specificity , Superior Colliculi/cytology , Superior Colliculi/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...