Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biofouling ; 37(5): 465-480, 2021 05.
Article in English | MEDLINE | ID: mdl-34210218

ABSTRACT

Liquid wastes (LW) disposed in hospital handwashing sinks may affect colonization of sink P-traps by carbapenemase-producing Klebsiella pneumoniae (CPKP), causing CPKP dispersal into the patient care environment. This study aimed to determine the effect of LW on biofilm formation and CPKP colonization in a P-Trap model (PTM). PTMs containing polymicrobial biofilms grown in autoclaved municipal tap water (ATW) supplemented with 5% dextrose in water (D5W), nutritional shake (Shake), sugar-based soft drink (Soda), or ATW were inoculated with K. pneumoniae ST258 KPC+ (ST258) or K. pneumoniae CAV1016 (CAV1016) and sampled after 7, 14, and 21 d. Biofilm bio-volume, mean thickness, and heterotrophic plate counts were significantly reduced and roughness coefficient significantly increased by Soda compared with D5W, Shake, or ATW. CPKP were significantly reduced by Soda but significantly amplified by D5W (ST258; CAV1016, 7 d) and Shake (ST258) suggesting that reducing LW disposal in sinks may reduce CPKP dispersal into patient care environments.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins , Biofilms , Humans , Nutrients , beta-Lactamases
2.
AIMS Microbiol ; 6(1): 43-63, 2020.
Article in English | MEDLINE | ID: mdl-32226914

ABSTRACT

The p-traps of hospital handwashing sinks represent a potential reservoir for antimicrobial-resistant organisms of major public health concern, such as carbapenemase-producing KPC+ Klebsiella pneumoniae (CPKP). Bacteriophages have reemerged as potential biocontrol agents, particularly against biofilm-associated, drug-resistant microorganisms. The primary objective of our study was to formulate a phage cocktail capable of targeting a CPKP strain (CAV1016) at different stages of colonization within polymicrobial drinking water biofilms using a CDC biofilm reactor (CBR) p-trap model. A cocktail of four CAV1016 phages, all exhibiting depolymerase activity, were isolated from untreated wastewater using standard methods. Biofilms containing Pseudomonas aeruginosa, Micrococcus luteus, Stenotrophomonas maltophilia, Elizabethkingia anophelis, Cupriavidus metallidurans, and Methylobacterium fujisawaense were established in the CBR p-trap model for a period of 28 d. Subsequently, CAV1016 was inoculated into the p-trap model and monitored over a period of 21 d. Biofilms were treated for 2 h at either 25 °C or 37 °C with the phage cocktail (109 PFU/ml) at 7, 14, and 21 d post-inoculation. The effect of phage treatment on the viability of biofilm-associated CAV1016 was determined by plate count on m-Endo LES agar. Biofilm heterotrophic plate counts (HPC) were determined using R2A agar. Phage titers were determined by plaque assay. Phage treatment reduced biofilm-associated CAV1016 viability by 1 log10 CFU/cm2 (p < 0.05) at 7 and 14 d (37 °C) and 1.4 log10 and 1.6 log10 CFU/cm2 (p < 0.05) at 7 and 14 d, respectively (25 °C). No significant reduction was observed at 21 d post-inoculation. Phage treatment had no significant effect on the biofilm HPCs (p > 0.05) at any time point or temperature. Supplementation with a non-ionic surfactant appears to enhance phage association within biofilms. The results of this study suggest the potential of phages to control CPKP and other carbapenemase-producing organisms associated with microbial biofilms in the healthcare environment.

3.
Mycopathologia ; 183(6): 921-934, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30306397

ABSTRACT

Fungal pathogens are a growing worldwide concern. Declines in a number of economically and agriculturally important plant and animal species pose a significant threat to both biodiversity and food security. Although many effective antifungal agents have been identified, their toxicity often precludes their use with food products or sensitive animal species. This has prompted the exploration of natural products as effective treatment compounds. In the present study, several essential oils were tested for their capacity to limit the growth of the fungal pathogens Ascosphaera apis and Pseudogymnoascus destructans, the causative agents of chalkbrood disease among honey bee larvae and white-nose syndrome among bats, respectively. Essential oils of cinnamon bark, citronella, lemongrass, and orange were exposed to A. apis in contact-dependent oil-agar suspensions as well as in contact-independent shared airspaces. Essential oils of cinnamon bark, citronella, and lemongrass were exposed to P. destructans in contact-dependent oil-agar suspensions. All compounds were found to significantly inhibit mycelial growth at low concentrations, suggesting the potential for these natural products to be used for controlling these and other select fungal pathogens.


Subject(s)
Antifungal Agents/pharmacology , Ascomycota/drug effects , Mycoses/veterinary , Oils, Volatile/pharmacology , Animals , Antifungal Agents/isolation & purification , Ascomycota/isolation & purification , Bees , Chiroptera , Cinnamomum zeylanicum/chemistry , Citrus sinensis/chemistry , Cymbopogon/chemistry , Microbial Sensitivity Tests , Oils, Volatile/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...