Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 18743, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36335187

ABSTRACT

Metal-free chemical vapor deposition (CVD) of single-layer graphene (SLG) on c-plane sapphire has recently been demonstrated for wafer diameters of up to 300 mm, and the high quality of the SLG layers is generally characterized by integral methods. By applying a comprehensive analysis approach, distinct interactions at the graphene-sapphire interface and local variations caused by the substrate topography are revealed. Regions near the sapphire step edges show tiny wrinkles with a height of about 0.2 nm, framed by delaminated graphene as identified by the typical Dirac cone of free graphene. In contrast, adsorption of CVD SLG on the hydroxyl-terminated α-Al2O3 (0001) terraces results in a superstructure with a periodicity of (2.66 ± 0.03) nm. Weak hydrogen bonds formed between the hydroxylated sapphire surface and the π-electron system of SLG result in a clean interface. The charge injection induces a band gap in the adsorbed graphene layer of about (73 ± 3) meV at the Dirac point. The good agreement with the predictions of a theoretical analysis underlines the potential of this hybrid system for emerging electronic applications.

2.
Beilstein J Nanotechnol ; 13: 219-229, 2022.
Article in English | MEDLINE | ID: mdl-35281628

ABSTRACT

The performance of nanoelectronic and molecular electronic devices relies strongly on the employed functional units and their addressability, which is often a matter of appropriate interfaces and device design. Here, we compare two promising designs to build solid-state electronic devices utilizing the same functional unit. Optically addressable Ru-terpyridine complexes were incorporated in supramolecular wires or employed as ligands of gold nanoparticles and contacted by nanoelectrodes. The resulting small-area nanodevices were thoroughly electrically characterized as a function of temperature and light exposure. Differences in the resulting device conductance could be attributed to the device design and the respective transport mechanism, that is, thermally activated hopping conduction in the case of Ru-terpyridine wire devices or sequential tunneling in nanoparticle-based devices. Furthermore, the conductance switching of nanoparticle-based devices upon 530 nm irradiation was attributed to plasmon-induced metal-to-ligand charge transfer in the Ru-terpyridine complexes used as switching ligands. Finally, our results reveal a superior device performance of nanoparticle-based devices compared to molecular wire devices based on Ru-terpyridine complexes as functional units.

3.
Nanoscale Adv ; 3(2): 538-549, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-36131745

ABSTRACT

Donor-acceptor molecules are a subject of great attention due to their immense potential in molecular electronics and photovoltaics. Despite numerous extensive studies demonstrating their functionality in solution, the donor-acceptor character is usually lost upon adsorption on a conducting substrate. Here the concept of breaking the conjugation between the donor and acceptor unit by insertion of a bridge is used. Furthermore, the bridge introduces a kink into the dyad and thus, reduces the possibility of hybridization with the substrate. A donor-bridge-acceptor dyad composed of carbazole and phenalenone units joined through a flexible bridge is synthesized and deposited on a Pt(111) surface. Its electronic properties are investigated with a combination of low temperature scanning tunneling microscope measurements and density functional theory simulations. Two preferential adsorption configurations are identified, in which individual molecules form strong bonds to the substrate and to a Pt adatom. Differential conductance measurements and atomistic simulations evidence the preservation of a reduced donor-acceptor character upon adsorption of the molecule, where this reduction is ascribed to the strong molecule-metal hybridization. Our results highlight the changes in donor-acceptor character of the dyad induced by the substrate and provide guidelines for the use of donor-bridge-acceptor molecules as functional units in solid-state devices.

4.
Beilstein J Nanotechnol ; 6: 1421-31, 2015.
Article in English | MEDLINE | ID: mdl-26199846

ABSTRACT

Disordered and uniform (2√3 × 2√3)R30° superstructures of fullerenes on the Au(111) surface have been studied using scanning tunneling microscopy and spectroscopy. It is shown that the deposition and growth process of a fullerene monolayer on the Au(111) surface determine the resulting superstructure. The supply of thermal energy is of importance for the activation of a Au vacancy forming process and thus, one criterion for the selection of the respective superstructure. However, here it is depicted that a vacancy-adatom pair can be formed even at room temperature. This latter process results in C60 molecules that appear slightly more bright in scanning tunnelling microscopy images and are identified in disordered (2√3 x 2√3)R30° superstructures based on a detailed structure analysis. In addition, these slightly more bright C60 molecules form uniform (2√3 x 2√3)R30° superstructures, which exhibit intermolecular interactions, likely mediated by Au adatoms. Thus, vacancy-adatom pairs forming at room temperature directly affect the resulting C60 superstructure. Differential conductivity spectra reveal a lifting of the degeneracy of the LUMO and LUMO+1 orbitals in the uniform (2√3 x 2√3)R30° superstructure and in addition, hybrid fullerene-Au(111) surface states suggest partly covalent interactions.

5.
Langmuir ; 30(2): 574-83, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24364737

ABSTRACT

Integration of molecule-capped gold nanoparticles (AuNP) into nanoelectronic devices requires detailed knowledge about the AuNP-electrode interface. Here, we report the pH-dependent adsorption of amine or carboxylic acid-terminated gold nanoparticles on platinum or gold/palladium (30% Pd) alloy, respectively. We synthesized amine-terminated AuNP, applying a new solid phase supported approach, as well as AuNP exhibiting carboxylic acid as terminal groups. The pH-induced agglomeration of the synthesized AuNP was investigated by UV-vis, DLS, and ζ-potential measurements. Depending on the pH and the ionic strength of the AuNP solution a preferential adsorption on the different metals occurred. Thereby, we demonstrate that by choosing the appropriate functional group and adjusting the pH as well as the ionic strength a directed binding can be achieved, which is an essential prerequisite for applications of these particles in nanoelectronics. These findings will pave the way for a controlled designing of the interface between molecule-capped AuNP and metallic electrodes for applications in nanoelectronics.

6.
Nanotechnology ; 23(12): 125302, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22414820

ABSTRACT

The reliable fabrication of nanoelectrode pairs with predefined separations in the few nanometer range is an essential prerequisite for future nanoelectronic devices. Here we demonstrate a fine-tuned electron-beam lithographic (EBL) fabrication route which is suitable for defining nanoelectrode pairs with a gap size down to 3 ± 1 nm and with a yield of 55%. This achievement is based on an optimized two-layer resist system in combination with an adopted developer system, as well as on an elaborated nanoelectrode pattern design taking into consideration the EBL inherent proximity effect. Thus, even a structural control in the nanometer scale is achieved in the EBL process.

7.
Phys Chem Chem Phys ; 14(5): 1635-41, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22193370

ABSTRACT

The electron transport through molecules in molecular devices is typically influenced by the nature of the interfaces with the contacting electrodes and by the interactions between neighbouring molecules. It is a major goal of molecular electronics to adjust the electronic function of a molecular device by tailoring the intrinsic molecular properties and the interfacial and intermolecular interactions. Here, we report on the tunability of the electronic properties of coronene derivatives, namely dodecakis(arylthio)coronenes (DATCs), which are found to exhibit a three-dimensional aromatic system. Scanning tunnelling microscopy (STM), spectroscopy (STS) and simulations based on the density functional theory (DFT) are employed to characterize the structural and electronic properties of these molecules deposited on Au(111) surfaces. It is shown that modifications of the peripheral aryl-groups allow us to specifically affect the self-assembly and the charge transport characteristics of the molecules. Molecular assemblies like supramolecular wires with highly delocalized orbitals and single molecules with molecular "quantum dot" characteristics are obtained in this way.

8.
Langmuir ; 27(16): 10312-8, 2011 Aug 16.
Article in English | MEDLINE | ID: mdl-21749130

ABSTRACT

One of the challenges in molecular electronics is to design molecules which can be used as functional units in electronic devices. The subject of our investigations is an asymmetrical molecule, dihydroxy(4-thiomorpholinomethyl)benzoic acid (TMBA), whose structural and electronic properties are characterized. The self-assembly behavior of TMBA on Au(111) surfaces resulting in highly ordered monolayers is obtained using scanning tunneling microscopy (STM). Furthermore, investigations on the electronic properties of the combined metal/molecule system reveal an orbital mediated tunneling process and tunneling decay constants for the carboxylic and thiomorpholino group. Thus, a diode-like character of TMBA is shown to be caused by intrinsic electronic properties of different molecular moieties.

9.
J Phys Condens Matter ; 23(1): 013001, 2011 Jan 12.
Article in English | MEDLINE | ID: mdl-21406815

ABSTRACT

In this review, possibilities to modify intentionally the electronic transport properties of metal/molecule/metal devices (MMM devices) are discussed. Here especially the influence of the metal work function, the metal-molecule interface, the molecule dipole and different tunneling mechanisms are considered. A route to evaluate the effective surface work function of metal-molecule systems is given and, based on experimental results, an exemplary estimation is performed. The electron transport across different metal-molecule interfaces is characterized by relating transmission coefficients extracted from experimentally derived molecular conductances, decay constants or tunneling barrier heights. Based on the reported results the tunneling decay constant can be assumed to be suitable to characterize intrinsic molecular electron transport properties, while the nature of the metal-molecule contacts is properly described by the transmission coefficient. A clear gradation of transmission efficiencies of metal-anchoring group combinations can be given.

10.
Aust J Chem ; 64(8): 1177-1179, 2011 Aug 19.
Article in English | MEDLINE | ID: mdl-23345645

ABSTRACT

Thin films of 1,3-diethylbenzimidazol-2-ylidene (BIEt) were fabricated from THF solution on solid gold substrates and characterised by high-resolution X-ray photoelectron and near-edge X-ray absorption fine structure spectroscopy. The surface-analytical data are in accord with the formation of self-assembled monolayers of BIEt molecules exhibiting an approximately vertical orientation on the substrate. The crystal structure of (BIEt)(2) was also determined.

11.
Phys Chem Chem Phys ; 12(35): 10518-24, 2010 Sep 21.
Article in English | MEDLINE | ID: mdl-20607163

ABSTRACT

Electronic transport measurements of single, systematically varied 4,4'-bis(mercaptoalkyl)-biphenyl derivatives (MABP) are performed in a controlled test-device. The molecules are composed of a central biphenyl unit (BP) carrying two mercaptoalkyl substituents with different chain lengths (m, n = number of CH(2)-units), in the para-position of the BP unit. The total length of both spacers is m + n = 10. The molecular conductance of these individual MABPs deposited on Au (111) substrates is studied using STM-based break junctions. It is shown that the molecular conductance depends on the relative position of the BP unit within the molecule. In the case of the symmetric derivative 5BP5 a value of 0.07 +/- 0.01 nS is obtained, while for 1BP9 the molecular conductance is doubled and a value of 0.17 +/- 0.03 nS results. This relatively high value of conductance for the single Au(tip)-1BP9-Au(substrate) junction is attributed to an increased coupling of the BP unit to the adjacent electrode, i.e. the STM-tip or the Au-substrate. We address the role of the specific contact situation (-S-Au) and of the position of the electrically active molecular moiety and thus come to a deeper understanding of the electronic transport properties of 4,4'-bis(mercaptoalkyl)biphenyl derivatives.

12.
Small ; 5(4): 496-502, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19197965

ABSTRACT

The electrical properties of alpha,omega-mercaptoalkyl ferrocenes with different alkyl chain lengths embedded in a self-assembled host matrix of alkanethiols on Au(111) are studied by scanning tunneling microscopy and spectroscopy. Based on current-distance spectroscopy, as well as on the evaluation of Fowler-Nordheim tunneling current oscillations, the apparent barrier height of ferrocene is determined independently by two methods. The electronic coupling of the ferrocene moiety to the Au(111) substrate is shown to depend on the length of the alkane-spacer chain. In a double tunnel junction model our experimental findings are explained, addressing the role of the different molecular moieties of the mercaptoalkyl ferrocenes.


Subject(s)
Ferrous Compounds/chemistry , Gold/chemistry , Microscopy, Scanning Tunneling/methods , Metallocenes
13.
Langmuir ; 25(2): 856-64, 2009 Jan 20.
Article in English | MEDLINE | ID: mdl-19177646

ABSTRACT

Using UHV-STM investigations and density-functional theory calculations we prove the contribution of Cu-adatoms to the stabilization of a new high-density phase of benzoate molecules on a Cu(110) substrate. We show that two different chemical species, benzoate and benzoate Cu-adatoms molecules, build the new close-packed structure. Although both species bind strongly to the copper surface, we identify the benzoate Cu-adatoms molecules as the more mobile species on the surface due to their reduced dipole moment and their lower binding energy compared to benzoate molecules. Therefore, the self-assembly process is supposed to be mediated by benzoate Cu-adatom species, which is analogous to the gold-thiolate species on Au(111) surfaces.


Subject(s)
Benzoates/chemistry , Copper/chemistry , Computer Simulation , Microscopy, Scanning Tunneling , Models, Chemical , Particle Size , Surface Properties
14.
Langmuir ; 24(9): 4577-80, 2008 May 06.
Article in English | MEDLINE | ID: mdl-18351792

ABSTRACT

The molecular structure of submonolayer-coverage phases of 3-(thioacetyl)-propanoylferrocene and 5-ferrocenylpentanethiol in mixed layers with alkanethiols on Au(111) was resolved by scanning tunneling microscopy. The ferrocenes formed a striped surface phase, similar to the lying-down structures of alkanethiols, resulting in equally spaced rows of the ferrocene moieties. The obtained nanoscale lattice of functional groups on the surface offers an interesting potential for the patterning of small, periodic structures with precise distance control via a hydrocarbon spacer.

15.
Langmuir ; 22(7): 3021-7, 2006 Mar 28.
Article in English | MEDLINE | ID: mdl-16548552

ABSTRACT

A method is presented for depositing mixed self-assembled monolayers (SAMs) of dodecanethiol (C12) and 4'-methyl-1,1'-biphenyl-4-butane (H3C-C6H4-C6H4-(CH2)4-SH, BP4) by insertion of BP4 into a closely packed SAM of dodecanethiol on Au(111). Insertion takes place at defect sites such as domain boundaries or etch pits in the gold surface that are characteristic of C12 monolayers on gold. With a lower probability, insertion also occurs beside defect sites inside dodecanethiol domains. Insertion at defect sites results in domains of BP4, whereas insertion into C12 domains leads to isolated BP4 molecules. The isolated BP4 molecules are shown not to move at room temperature. By comparing the apparent height of the isolated BP4 molecules and BP4 domains, it is proposed that the isolated molecules have the same conformation as in the full-coverage phase. A simple two-layer model is proposed to characterize the current transport through BP4. The decay constant beta for the phenylene groups is deduced from the apparent STM heights of the inserted BP4 islands compared to the STM heights of the C12 closely packed monolayers.

16.
J Phys Chem B ; 109(23): 11424-6, 2005 Jun 16.
Article in English | MEDLINE | ID: mdl-16852397

ABSTRACT

A rectangular (3 x 2 radical3) surface lattice for long-term-annealed dodecanethiol self-assembled monolayers on Au(111) is observed by ultra-high-vacuum scanning tunneling microscopy. The new lattice has the same density and a unit cell of the same size as the well-known c(4 x 2) reconstruction. In contrast, it does not show hexagonal symmetry but rather a sort of thiol pairing, leading to a shift in the binding position of every second molecule. The described structure is believed to be an intermediate phase close to desorption.

SELECTION OF CITATIONS
SEARCH DETAIL
...