Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; : e202401278, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38803092

ABSTRACT

Self-assembly of chromophoric systems is a prerequisite to create well-ordered, processable nanomaterials with multiple functionalities. In the past two decades, the field of functional organic materials has primarily focused on systems featuring only one type of dye/π-conjugated unit. Consequently, many reports with mechanistic insights on the self-assembly of the dyes featuring different molecular packing have been reported. Subsequently, we have witnessed several attempts to organize the multi-chromophoric systems in solution and solid-state via different approaches using self-assembly as a tool. Incorporation of more than one dye is important in creating materials with tuneable optoelectronic properties. Consequently, self-assembly of more than one chromophoric systems have been investigated to some extent. This review aims to discuss the self-assembled materials derived from discrete π-conjugated systems comprising more than one dye units connected through covalent bonding (multi-chromophoric systems). Molecular design of various multi-chromophoric systems leading to the formation of crystals, liquid crystals and supramolecular polymers have been correlated with corresponding properties. We envisage that classification of self-assembled multi-chromophoric systems, with a note on tuneable optoelectronic properties, can provide a deeper understanding on the molecular design strategies, which is important in the fabrication of functional organic materials with optimum performances.

2.
Angew Chem Int Ed Engl ; 62(49): e202314211, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37797248

ABSTRACT

The functionalization of π-conjugated scaffolds with sterically demanding substituents is a widely used tactic to suppress cofacial (H-type) stacking interactions, which may even inhibit self-assembly. Contrary to expectations, we demonstrate herein that increasing steric effects can result in an enhanced thermodynamic stability of H-type supramolecular polymers. In our approach, we have investigated two boron dipyrromethene (BODIPY) dyes with bulky phenyl (2) and mesityl (3) meso-substituents and compared their self-assembly in nonpolar media with that of a parent meso-methyl BODIPY 1 lacking bulky groups. While the enhanced steric demand induces pathway complexity, the superior thermodynamic stability of the H-type pathways can be rationalized in terms of additional enthalpic gain arising from intermolecular C-H⋅⋅⋅F-B interactions of the orthogonally arranged aromatic substituents, which overrule their inherent steric demand. Our findings underline the importance of balancing competing non-covalent interactions in self-assembly.

SELECTION OF CITATIONS
SEARCH DETAIL
...