Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Zhejiang Univ Sci B ; 24(9): 755-778, 2023.
Article in English, Chinese | MEDLINE | ID: mdl-37701954

ABSTRACT

Bakanae is an emerging rice disease caused by the seed- and soil-borne pathogen Fusariumfujikuroi. It is becoming a more serious threat to sustainable rice production throughout rice-growing regions. Bakanae disease infection is responsible for high yield losses ranging from 3% to 95%, and disease incidence varies based on the region and cultivars. Hence, understanding the nature of the pathogen, its pathogenicity, disease epidemiology, symptoms, host|-|pathogen interaction, and the role of secondary metabolites in the disease cycle will be helpful in the development of effective and sustainable management strategies. However, very few comprehensive studies have described the details of rice bakanae disease. Thus, in this review we summarize and discuss in detail the information available from 1898 to 2023 on various critical facets of bakanae disease, and provide perspectives on future research.

2.
Heliyon ; 8(10): e11094, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36281399

ABSTRACT

Nitropolycyclic aromatic hydrocarbons (Nitro-PAH) are highly toxic PHA derivatives. Nitro-PHAs are emitted by carbonaceous materials and PHA post-emission transformation, which causes water and environmental pollution and also exists as carcinogenic and immunotoxic agents. UV light has been shown to cause DNA damage and improves the covalent binding of PAH to DNA significantly. Mosquito breeding grounds are pools of water that can be large open zones or encased ponds with varying levels of sunlight exposure. This research was performed to assess the combined effects of UV-B exposure and Nitro-PAH on the physiological function of Culex quinquefasciatus larvae. To assess the impact of UV-B irradiation and Nitro-PAH exposure on mosquito vectors, parameters were examined: (1) Nitro-PAH availability and its impact on cell fatalities; (2) the detoxifying abilities of cytochrome P450, glutathione-S-transferase, and esterase; (3) the reactions to Reactive Oxygen Species; and (4) The resistance of mosquito larvae to three synthetic pesticides (temephos, imidacloprid, and permethrin). UV-B and Nitro-PAH treatment caused cellular damage and increased major detoxification enzymes such as α & ß-esterase, cytoP450, CAT, GST, and POX. The levels of oxidative stress, ROS and protein carbonyl content, nitrite, ascorbic acid and thiobarbituric acid were decreased significantly. Toxicology bioassays revealed that UV-B + Nitro-PAH exposure significantly increased larval susceptibility. The current study concludes that prior exposure to Nitro-PAHs and UV-B may make mosquito larvae more vulnerable to chemical insecticides.

3.
Chemosphere ; 286(Pt 3): 131914, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34418664

ABSTRACT

Reactive dyes are extensively used in a plethora of industries, which in turn release toxic wastes into the environment. The textile dye waste remediation is crucial as it may contain several toxic elements. The utilization of bacterial consortium for bioremediation has acquired consideration, over the utilization of single strains. In this study, a microbial consortium containing three bacterial sp. (Bacillus subtilis, Brevibacillus borstelensis and Bacillus firmus) was tested for its degrading ability of the textile RR 170 dye. The bacterial consortium degraded the dye effectively at lower concentrations and the efficiency decreased as the dye concentration increased. SEM analysis revealed that, with dye treatment, the consortium appeared as tightly packed clumps with rough cell surface and were able to produce EPS and biofilms. EPS production was higher at 40 mg/l, 100 mg/l and 200 mg/l of the dye treatment conditions. Interestingly, the maximum biofilm formation was observed only at 40 µg/ml of the dye treatment, which indicates that RR 170 dye concentration affects the biofilm formation independent of EPS levels. The UV-vis spectroscopy, HPLC, FTIR and 2D-FTIR analyses confirmed the decolorization and biodegradation of RR 170 dye by the bacterial consortium. Toxicological studies performed with the dye and their degraded products in Allium cepa root cells revealed that, whereas the RR 170 dye induced genotoxic stress, the degraded dye products showed no significant genotoxic effects in root cells. Together, the investigated bacterial consortium decolorized and degraded the RR 170 dye resulting in metabolites that are non-toxic to the living cells.


Subject(s)
Brevibacillus , Coloring Agents , Azo Compounds , Biodegradation, Environmental , Biofilms , Textile Industry , Wastewater
4.
J Environ Manage ; 289: 112553, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33857710

ABSTRACT

The co-occurrence of environmental stresses such as heavy metals (HM) and increased atmospheric temperature (IAT) pose serious implications on plant growth and productivity. In this work, we evaluated the role of plant growth-promoting bacteria (PGPB) and its effectiveness on Zea mays growth, stress tolerance and phytoremediation potential in multi-metal (MM) contaminated soils under IAT stress conditions. The PGPB strain TCU11 was isolated from metal contaminated soils and identified as Bacillus cereus. TCU11 was able to resist abiotic stresses such as IAT (45 °C), MM (Pb, Zn, Ni, Cu, and Cd), antibiotics and induced in vitro plant growth promotion (PGP) by producing siderophores (catechol and hydroxymate) and indole 3-acetic acid even in the presence of MM under IAT. Inoculation of TCU11 significantly increased the biomass, chlorophyll, carotenoids, and protein content of Z. mays compared to the respective control under MM, IAT, and MM + IAT stress. A decrease of malondialdehyde and over-accumulation of total phenolics, proline along with the increased activity of superoxide dismutase, catalase and ascorbic peroxidase were observed in TCU11 inoculated plants under stress conditions. These results suggested MM and/or IAT significantly reduced the maize growth, whereas TCU11 inoculation mitigated the combined stress effects on maize performance. Moreover, the inoculation of TCU11 under IAT stress increased the MM (Pb, Zn, Ni, Cu, and Cd) accumulation in plant tissues and also increased the translocation of HM from root to shoot except for Ni. The results of soil HM mobilization further indicates that IAT increased the HM mobilizing activity of TCU11, thus increasing the concentrations of bio-available HM in soil. These results suggested that TCU11 not only alleviates MM and IAT stresses but also enhances the biomass production and HM accumulation in plants. Therefore, TCU11 can be exploited as inoculums for improving the phytoremediation efficiency in MM polluted soils under IAT conditions.


Subject(s)
Metals, Heavy , Soil Pollutants , Bacillus cereus , Biodegradation, Environmental , Metals, Heavy/analysis , Plant Roots/chemistry , Soil , Soil Pollutants/analysis , Temperature
5.
Biotechnol Rep (Amst) ; 28: e00522, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32963974

ABSTRACT

The bacterial strain capable of decolorization and detoxification of the Reactive Blue 160 dye was isolated from a dye waste disposal site of Tirupur textile industries. The bacterial strain was screened and selected based on its decolorization capability of RB 160dye, which was identified as Bacillus subtilis by 16S rRNA sequencing. The strain was tested for the decolorization potential under different physio-chemical experimental conditions (pH, temperature, agitation, non-agitation) and observed a complete decolorization at pH 7 and 35 °C under shaking condition within 48 h of time. The enzymes such as, Lignin peroxidase, azoreductase and NADH-DCI were significantly induced in the strain during the decolorization of RB160 dye. Phytotoxicity and microbial toxicity studies revealed that the decolorized product of RB160 dye is less toxic to the plants and microbes. Thus, our results recommend the prospective use of B subtilis in bioremediation of RB160 dye.

6.
Sci Total Environ ; 735: 139496, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32480152

ABSTRACT

Pyriproxyfen (PPF), a broad-spectrum insecticide known to cause reproductive and endocrine disruption in invertebrates, while the data is scarce in aquatic vertebrates. The goal of this study is to investigate the impact of PPF on reproductive endocrine system of male and female zebrafish along hypothalamus-pituitary-gonadal (HPG) axis. In brain, PPF caused significant alteration in the transcripts of erα, lhß, and cyp19b genes in male and fshß, lhß, and cyp19b genes in female zebrafish. The downstream genes of steroidogenic pathway like, star, 3ßhsd, 17ßhsd, and cyp19a expression were significantly altered in gonad of both sexes. Subsequent changes in circulatory steroid hormone levels lead to imbalance in hormone homeostasis as revealed from estradiol/testosterone (E2/T) ratio. Further, the vitellogenin transcript level was enhanced in hepatic tissues and their blood plasma content was increased in male (16.21%) and declined in female (21.69%). PPF also induced histopathological changes in gonads such as, reduction of mature spermatocytes in male and vitellogenic oocytes in female zebrafish. The altered E2/T ratio and gonadal histopathology were supported by the altered transcript levels of HPG axis genes. Overall, these findings provide new insights of PPF in zebrafish reproductive system and highlights for further investigations on its potential risks in aquatic environment.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical/pharmacology , Animals , Endocrine System/drug effects , Female , Gonads/drug effects , Homeostasis , Hypothalamus , Male , Pyridines , Reproduction , Vitellogenins , Zebrafish
7.
Chemosphere ; 244: 125521, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31812764

ABSTRACT

Climatic factors particularly increased atmospheric temperature (IAT) greatly alters plant microbe and heavy metal interactions and subsequently reduces plant growth and phytoremediation efficiency. The aim of the study was to assess the effects of inoculation of chromium reducing-thermotolerant plant growth promoting bacteria (CRT-PGPB) on plant growth, physiological responses and chromium (Cr) uptake by Sorghum bicolor under IAT condition. Three potential CRT-PGPB strains were isolated from Cr contaminated sites and identified as Bacillus cereus TCR17, Providencia rettgeri TCR21 and Myroides odoratimimus TCR22 through molecular characterization. These strains displayed the potential to reduce Cr6+ to Cr3+, produce siderophores, indole-3-acetic acid and solubilize phosphate. Inoculation of S. bicolor with CRT-PGPB increased plant growth, antioxidant status (superoxide dismutase, catalase and ascorbate peroxidase) and decreased proline and malondialdehyde contents in plants under Cr, IAT and Cr + IAT stress indicate that PGPB helped plants to reduce stress induced oxidative damage. Irrespective of IAT stress, inoculation of CRT-PGPB decreased the accumulation of Cr in plants compared with un-inoculated control suggest that CRT-PGPB might have the potential to improve phytostabilization process in Cr contaminated soils. Furthermore, gene expression studies confirmed that inoculation of TCR21 down-regulated the expression of proline synthesis gene (p5cs1) and up-regulated the expression of antioxidant related genes (sod, apx1 and cat) and stress tolerance genes (sHsp). Our results showed that CRT-PGPB exhibiting potential to tolerate Cr, temperature, produce plant beneficial metabolites and reduce Cr6+ to Cr3+, can be exploited as potential inoculants for improving plant growth and phytoremediation process in Cr contaminated soil under IAT condition.


Subject(s)
Bacteria/metabolism , Biodegradation, Environmental , Chromium/metabolism , Heat-Shock Response , Plant Development , Sorghum/microbiology , Thermotolerance , Antioxidants/metabolism , Chromium/toxicity , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Metals, Heavy/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Sorghum/growth & development , Sorghum/physiology
8.
Toxicol Rep ; 7: 16-22, 2020.
Article in English | MEDLINE | ID: mdl-31871898

ABSTRACT

The study was envisioned to evaluate the decolorization of Reactive Blue 160 (RB160) dye by using indigenous microbes. Contaminated soil from textile dye industry was collected from Noyyal river basin, Tamil Nadu, India. Potential dye degrading bacterial strain was recognized as Bacillus firmus by 16SrRNA gene sequencing analysis. RB160 dye (500 µg/ml) was effectively degraded by B. firmus and toxicological analyses were performed with RB160 and their degraded product. Phytotoxicity revealed that degraded product of RB160 into non-toxic nature by B. firms. Toxicity assays were carried out on root cells of Allium cepa and human skin cell line (CRL 1474). Toxicity analysis of A. cepa and cell line signifies that dye exerts toxic cause on the root cells and IC50 values of RB160 showed toxic to human skin cell lines, while degradation products of the dye are moderately less in toxic. Zebrafish embryo toxicity also evaluated by RB160 and degraded product on phenotypic deformation, survival, hatching and heartbeat rate. However, RB160 with concentration of 500 µg/ml decrease in the survival, hatching, heartbeat rate and induced phenotypic alterations. In which, degraded products exhibited significant development in zebrafish embryos as compared to dye. Based on the studies effects of RB160 and capability of B. firmus can effectively degrade RB160, and their degraded products were harmless to the environments and aquatic system.

9.
J Environ Manage ; 254: 109779, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31726280

ABSTRACT

Rapid industrialization, modern agricultural practices and other anthropogenic activities add a significant quantity of toxic heavy metals into the environment, which induces severe toxic effects on all form of living organisms, alter the soil properties and its biological activity. Remediation of heavy metal contaminated sites has become an urgent necessity. Among the existing strategies, phytoremediation is an eco-friendly and much convincing tool for the remediation of heavy metals. However, the applicability of phytoremediation in contaminated sites is restricted by two prime factors such as i) slow growth rate at higher metal contaminated sites and ii) metal bioavailability. This circumstance could be minimized and accelerate the phytoremediation efficiency by incorporating the potential plant growth promoting rhizobacterial (PGPR) as a combined approach. PGPR inoculation might improve the plant growth through the production of plant growth promoting substances and improve the heavy metal remediation efficiency by the secretion of chelating agents, acidification and redox changes. Moreover, rhizobacterial inoculation consolidates the metal tolerance and uptake by regulating the expression of various metal transporters, tolerant and metal chelator genes. However, the exact underlying molecular mechanism of PGPR mediated plant growth promotion and phytoremediation of heavy metals is poorly understood. Thus, the present review provides clear information about the molecular mechanisms excreted by PGPR strains in plant growth promotion and phytoremediation of heavy metals.


Subject(s)
Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Plant Development , Soil
10.
J Environ Manage ; 217: 56-70, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29597108

ABSTRACT

Pollution by heavy metals has been identified as a global threat since the inception of industrial revolution. Heavy metal contamination induces serious health and environmental hazards due to its toxic nature. Remediation of heavy metals by conventional methods is uneconomical and generates a large quantity of secondary wastes. On the other hand, biological agents such as plants, microorganisms etc. offer easy and eco-friendly ways for metal removal; hence, considered as efficient and alternative tools for metal removal. Bioremediation involves adsorption, reduction or removal of contaminants from the environment through biological resources (both microorganisms and plants). The heavy metal remediation properties of microorganisms stem from their self defense mechanisms such as enzyme secretion, cellular morphological changes etc. These defence mechanisms comprise the active involvement of microbial enzymes such as oxidoreductases, oxygenases etc, which influence the rates of bioremediation. Further, immobilization techniques are improving the practice at industrial scales. This article summarizes the various strategies inherent in the biological sorption and remediation of heavy metals.


Subject(s)
Biodegradation, Environmental , Metals, Heavy , Adsorption , Plants , Surveys and Questionnaires
11.
Microbiol Res ; 204: 65-71, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28870293

ABSTRACT

Plant growth promoting rhizobacteria (PGPR) can increase the host plant tolerance to cope up with heavy metal induced stress, which can be improve plant growth. Thus, the present study was designed to isolate Cr(VI) tolerant PGPR strain and evaluate its plant growth promoting (PGP) properties under Cr(VI) stress. Rhizobacterial strain AR6 was isolated from the rhizosphere of Phaseolus vulgaris L. and showed 99% homology with Cellulosimicrobium funkei (KM032184) in BLASTn analysis. Strain AR6 was specifically selected due to its high Cr(VI) tolerance (1200µg/ml) and substantial production of PGP substances. Strain AR6 produced 36.75µg/ml of indole acetic acid (IAA), 60.40µg/ml of ammonia and 14.23µg/ml of exopolysaccharide (EPS). Moreover, strain AR6 showed positive results for catalase, protease, amylase, lipase production and phosphate solubilization. A trend of Cr(VI) concentration dependent progressive decline for PGP traits of strain AR6 was observed excluding EPS which was regularly increased on increasing concentrations of Cr(VI). Among the four tested Cr(VI) concentrations, 250µg/ml showed the maximum toxicity to PGP activities of strain AR6. Inoculation of rhizobacterial strain AR6 significantly increased the root length of test crops in the presence of Cr(VI) and produced a considerable number of colonizes on the root of versatile dicot and monocot plants. Moreover, strain AR6 exhibited strong antagonistic activity against phytopathogen Aspergillus niger. Thus, the present study suggests that metal tolerant and PGP activities of the rhizobacterial strain AR6 could be exploited for environmental and agricultural issues.


Subject(s)
Actinobacteria/metabolism , Chromium/toxicity , Phaseolus/drug effects , Phaseolus/microbiology , Plant Development/drug effects , Plant Development/physiology , Actinobacteria/drug effects , Actinobacteria/genetics , Ammonia/metabolism , Anti-Bacterial Agents/pharmacology , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chromium/administration & dosage , Colony Count, Microbial , Crops, Agricultural , Drug Resistance, Bacterial , Fungi/drug effects , Fungi/pathogenicity , Indoleacetic Acids/metabolism , Phosphates/metabolism , Plant Diseases/microbiology , Plant Growth Regulators/physiology , Plant Roots/growth & development , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Rhizosphere , Soil , Soil Microbiology , Stress, Physiological
12.
J Hazard Mater ; 333: 42-53, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28340388

ABSTRACT

The present study, a novel haloalkaliphilic Cr(VI) tolerant bacterial strain, Cellulosimicrobium funkei AR8, was isolated and characterized for its high Cr(VI) reduction. In batch experiments, Cr(VI) reduction was evaluated under different parametric conditions which include different pH (5-9), temperature (25-45°C), NaCl (0-3%) and Cr(VI) concentrations (100-250µg/ml). Variations in the cell surface functional groups and morphology of the bacterial cells after Cr(VI) reduction were characterized by FT-IR and SEM-EDX. FT-IR analysis revealed that cell surface functional groups such as alkanes, amide and amines are involved in chromium biosorption and SEM-EDX results showed that biosorption and immobilization of chromium species on the cell surface. Bioconversion of Cr(VI) into Cr(III) by strain AR8 was confirmed by XRD and Raman spectroscopy analysis. Intracellular localization of reduced product (Cr(III)) was visualized by TEM analysis. Various instrumentation analysis verified that Cr(VI) removal mechanism of C. funkei AR8 strain was achieved by both extra and intracellular reducing machinery. Toxicity study revealed that the bacterially reduced product exerted less toxic effects on phenotypic, survival (91.31%), hatching (84.04%) and heart function (115±1.03 beats/min) of zebrafish (Danio rerio) embryos. Higher Cr(VI) reducing ability of the strain under haloalkaliphilic condition suggests the C. funkei AR8 as a novel and efficient strain for remediating Cr(VI) contaminated industrial effluents with high salinity and alkalinity.


Subject(s)
Actinobacteria/metabolism , Biodegradation, Environmental , Chromium/chemistry , Chromium/isolation & purification , Actinobacteria/growth & development , Animals , Chromium/metabolism , Chromium/toxicity , Embryo, Nonmammalian/drug effects , Heart Rate/drug effects , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Oxidation-Reduction , Salinity , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Temperature , X-Ray Diffraction , Zebrafish/embryology
13.
J Adv Res ; 7(6): 839-50, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27668092

ABSTRACT

Contamination of agriculture land by heavy metals is a worldwide risk that has sped up noticeably since the beginning of the industrial revolution. Hence, there arise the demands of heavy metal tolerant plant growth promoting bacterial strains for specific metal contaminated agricultural sites restoration. In this study, 36 bacterial isolates were screened out from the rhizospheric soil of Phaseolus vulgaris. Among these, two bacterial strains AR6 and AR8 were selected based on their higher Cr(VI) tolerance (1200 and 1100 µg/mL, respectively) and the maximum production of plant growth promoting substances. In the molecular characterization study, both the bacterial strains showed 99% homology with Cellulosimicrobium funkei KM032184. In greenhouse experiments, the exposure of Cr(VI) to P.vulgaris inhibited the growth and photosynthetic pigments and increased the enzymatic and non-enzymatic antioxidant expressions. However, rhizosphere bacterial inoculations alleviated the negative effect of Cr(VI) and enhanced the seed germination rate (89.54%), shoot (74.50%),root length (60%), total biomass (52.53%), chlorophyll a (15.91%), chlorophyll b (17.97%), total chlorophyll (16.58%) and carotenoid content (3.59%). Moreover, bacterial inoculations stabilized and modulated the antioxidant system of P. vulgaris by reducing the accumulation of Cr in plant tissues. The present finding shows the Cr(VI) tolerance and plant growth promoting properties of the rhizosphere bacterial strains which might make them eligible as biofertilizer of metal-contaminated soils.

SELECTION OF CITATIONS
SEARCH DETAIL
...