Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38678133

ABSTRACT

BACKGROUND: Prenatal exposure to environmental contaminants is a significant health concern because it has the potential to interfere with host metabolism, leading to adverse health effects in early childhood and later in life. Growing evidence suggests that genetic and environmental factors, as well as their interactions, play a significant role in the development of autoimmune diseases. OBJECTIVE: In this study, we hypothesized that prenatal exposure to environmental contaminants impacts cord serum metabolome and contributes to the development of autoimmune diseases. METHODS: We selected cord serum samples from All Babies in Southeast Sweden (ABIS) general population cohort, from infants who later developed one or more autoimmune-mediated and inflammatory diseases: celiac disease (CD), Crohn's disease (IBD), hypothyroidism (HT), juvenile idiopathic arthritis (JIA), and type 1 diabetes (T1D) (all cases, N = 62), along with matched controls (N = 268). Using integrated exposomics and metabolomics mass spectrometry (MS) based platforms, we determined the levels of environmental contaminants and metabolites. RESULTS: Differences in exposure levels were found between the controls and those who later developed various diseases. High contaminant exposure levels were associated with changes in metabolome, including amino acids and free fatty acids. Specifically, we identified marked associations between metabolite profiles and exposure levels of deoxynivalenol (DON), bisphenol S (BPS), and specific per- and polyfluorinated substances (PFAS). IMPACT STATEMENT: Abnormal metabolism is a common feature preceding several autoimmune and inflammatory diseases. However, few studies compared common and specific metabolic patterns preceding these diseases. Here we hypothesized that exposure to environmental contaminants impacts cord serum metabolome, which may contribute to the development of autoimmune diseases. We found differences in exposure levels between the controls and those who later developed various diseases, and importantly, on the metabolic changes associated with the exposures. High contaminant exposure levels were associated with specific changes in metabolome. Our study suggests that prenatal exposure to specific environmental contaminants alters the cord serum metabolomes, which, in turn, might increase the risk of various immune-mediated diseases.

2.
Environ Sci Technol ; 58(5): 2214-2223, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38263945

ABSTRACT

The composition of human breast milk (HBM) exhibits significant variability both between individuals and within the same individual. While environmental factors are believed to play a role in this variation, their influence on breast milk composition remains inadequately understood. Herein, we investigate the impact of environmental factors on HBM lipid composition in a general population cohort. The study included mothers (All Babies In Southeast Sweden study) whose children later progressed to one or more immune-mediated diseases later in life: type 1 diabetes (n = 9), celiac disease (n = 24), juvenile idiopathic arthritis (n = 9), inflammatory bowel disease (n = 7), hypothyroidism (n = 6), and matched controls (n = 173). Lipidome of HBM was characterized by liquid chromatography combined with high-resolution mass spectrometry. We observed that maternal age, body mass index, diet, and exposure to perfluorinated alkyl substances (PFASs) had a marked impact on breast milk lipidome, with larger changes observed in the milk of those mothers whose children later developed autoimmune diseases. We also observed differences in breast milk lipid composition in those mothers whose offspring later developed autoimmune diseases. Our study suggests that breast milk lipid composition is modified by a complex interaction between genetic and environmental factors, and, importantly, this impact was significantly more pronounced in those mothers whose offspring later developed autoimmune/inflammatory diseases. Our findings also suggest that merely assessing PFAS concentration may not capture the full extent of the impact of chemical exposures; thus, the more comprehensive exposome approach is essential for accurately assessing the impact of PFAS exposure on HBM and, consequently, on the health outcomes of the offspring.


Subject(s)
Autoimmune Diseases , Fluorocarbons , Infant , Female , Child , Humans , Milk, Human/chemistry , Lipidomics , Environmental Exposure , Lipids , Fluorocarbons/analysis
3.
iScience ; 26(3): 106268, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36915680

ABSTRACT

Previous prospective studies suggest that progression to autoimmune diseases is preceded by metabolic dysregulation, but it is not clear which metabolic changes are disease-specific and which are common across multiple immune-mediated diseases. Here we investigated metabolic profiles in cord serum in a general population cohort (All Babies In Southeast Sweden; ABIS), comprising infants who progressed to one or more immune-mediated diseases later in life: type 1 diabetes (n = 12), celiac disease (n = 28), juvenile idiopathic arthritis (n = 9), inflammatory bowel disease (n = 7), and hypothyroidism (n = 6); and matched controls (n = 270). We observed elevated levels of multiple triacylglycerols (TGs) an alteration in several gut microbiota related metabolites in the autoimmune groups. The most distinct differences were observed in those infants who later developed HT. The specific similarities observed in metabolic profiles across autoimmune diseases suggest that they share specific common metabolic phenotypes at birth that contrast with those of healthy controls.

4.
Sci Total Environ ; 826: 154112, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35219661

ABSTRACT

An adverse outcome pathway (AOP) is a compact representation of the available mechanistic information on observed adverse effects upon environmental exposure. Sharing of events across individual AOPs has led to the emergence of AOP networks. Since AOP networks are expected to be functional units of toxicity prediction, there is current interest in their development tailored to specific research question or regulatory problem. To this end, we have developed a detailed workflow to construct an endocrine-relevant AOP (ED-AOP) network based on the existing information available in AOP-Wiki. We propose a cumulative weight of evidence (WoE) score for each ED-AOP based on the WoE scores assigned to key event relationships (KERs) by AOP-Wiki, revealing gaps in AOP development. Connectivity analysis of the ED-AOP network comprising 48 AOPs reveals 7 connected components and 12 isolated AOPs. Subsequently, we apply standard network measures to perform an in-depth analysis of the two largest connected components of the ED-AOP network. Notably, the graph-theoretic analyses led to the identification of important events including points of convergence or divergence in the ED-AOP network. These findings can suggest potential adverse outcomes and facilitate the development of new endpoints or assays for chemical risk assessment. Detailed analysis of the largest component in the ED-AOP network gives insights on the systems-level perturbations caused by endocrine disruption, emergent paths, and stressor-event associations. In sum, the derived ED-AOP network can provide a broader view of the biological events disrupted by endocrine disruption, as well as facilitate better risk assessment of environmental chemicals.


Subject(s)
Adverse Outcome Pathways , Drug-Related Side Effects and Adverse Reactions , Humans , Risk Assessment
5.
Sci Total Environ ; 818: 151682, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-34793786

ABSTRACT

Exposure to environmental chemicals during early childhood is a potential health concern. At a tender age, children are exposed to fragrance chemicals used in toys and child care products. Although there are few initiatives in Europe and United States towards monitoring and regulation of fragrance chemicals in children's products, such efforts are still lacking elsewhere. Besides there has been no systematic effort to create a database compiling the surrounding knowledge on fragrance chemicals used in children's products from published literature. Here, we built a database of Fragrance Chemicals in Children's Products (FCCP) that compiles information on 153 fragrance chemicals from published literature. The fragrance chemicals in FCCP have been classified based on their chemical structure, children's product source, chemical origin and odor profile. Moreover, we have also compiled the physicochemical properties, predicted Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties, molecular descriptors and human target genes for the fragrance chemicals in FCCP. After building FCCP, we performed multiple analyses of the associated fragrance chemical space. Firstly, we assessed the regulatory status of the fragrance chemicals in FCCP through a comparative analysis with 21 chemical lists reflecting current guidelines or regulations. We find that several fragrance chemicals in children's products are potential carcinogens, endocrine disruptors, neurotoxicants, phytotoxins and skin sensitizers. Secondly, we performed a similarity network based analysis of the fragrance chemicals in children's products to reveal the high structural diversity of the associated chemical space. Lastly, we identified skin sensitizing fragrance chemicals in children's products using ToxCast assays. In a nutshell, we present a comprehensive resource and detailed analysis of fragrance chemicals in children's products highlighting the need for their better risk assessment and regulation to deliver safer products for children. FCCP is accessible at: https://cb.imsc.res.in/fccp.


Subject(s)
Endocrine Disruptors , Perfume , Child, Preschool , Endocrine Disruptors/toxicity , Humans , Odorants , Play and Playthings , Risk Assessment , United States
6.
J Steroid Biochem Mol Biol ; 214: 105998, 2021 11.
Article in English | MEDLINE | ID: mdl-34534667

ABSTRACT

Human exposure to environmental chemicals is a major contributor to the global disease burden. To characterize the external exposome it is important to assess its chemical components and to study their impact on human health. Biomonitoring studies measure the body burden of environmental chemicals detected in biospecimens from a wide range of the population. The detection of these chemicals in biospecimens (and, hence, human tissues) is considered an important biomarker of human exposure. However, there is no readily available resource that compiles such exposure data for human tissues from published literature, and no studies that explore the patterns in the associations between tissue-specific exposures and human diseases. We present Human Tissue-specific Exposome Atlas (TExAs), a compilation of 380 environmental chemicals detected across 27 human tissues. TExAs is accessible via a user friendly webserver: https://cb.imsc.res.in/texas. We compare the chemicals in TExAs with 55 global chemical regulations, guidelines, and inventories, which represent several categories of the external exposome of humans. Further to understand the potential implications on human health of chemicals detected across human tissues, we employ a network biology approach and explore possible chemical exposure-disease associations. Ensuing analyses reveal the possibilities of disease comorbidities and demonstrate the application of network biology in unraveling complex disease associations due to chemical exposure.


Subject(s)
Environmental Exposure/analysis , Exposome , Liver/drug effects , Biology , Biomarkers , Comorbidity , Computational Biology , Databases, Factual , Environmental Monitoring/methods , Humans , Systems Biology
7.
Chemosphere ; 278: 130387, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33838427

ABSTRACT

Exposure to environmental neurotoxicants is a significant concern due to their potential to cause permanent or irreversible damage to the human nervous system. Here, we present the first dedicated knowledgebase, NeurotoxKb 1.0, on environmental neurotoxicants specific to mammals. Using a detailed workflow, we have compiled 475 potential non-biogenic neurotoxicants from 835 published studies with evidence of neurotoxicity specific to mammals. A unique feature of NeurotoxKb 1.0 is the manual curation effort to compile and standardize the observed neurotoxic effects for the potential neurotoxicants from 835 published studies. For the 475 potential neurotoxicants, we have compiled diverse information such as chemical structures, environmental sources, chemical classification, physicochemical properties, molecular descriptors, predicted ADMET properties, and target human genes. To better understand the prospect of human exposure, we have explored the presence of potential neurotoxicants in external exposomes via two different analyses. By analyzing 55 chemical lists representing global regulations and guidelines, we reveal potential neurotoxicants both in regular use and produced in high volume. By analyzing human biospecimens, we reveal potential neurotoxicants detected in them. Lastly, a construction of the chemical similarity network and ensuing analysis revealed the diversity of the toxicological space of 475 potential neurotoxicants. NeurotoxKb 1.0 is accessible online at: https://cb.imsc.res.in/neurotoxkb/.


Subject(s)
Neurotoxicity Syndromes , Animals , Humans , Knowledge Bases , Mammals
8.
Chemosphere ; 271: 129583, 2021 May.
Article in English | MEDLINE | ID: mdl-33460906

ABSTRACT

Human milk is a vital source of nourishment for infants. However, numerous environmental contaminants also find their way into human milk, making up the major part of a newborn's external exposome. While there are chemical regulations in India and scientific literature on environmental contaminants is available, the systematic compilation, monitoring, and risk management of human milk contaminants are inadequate. We have harnessed the potential of this large body of literature to develop the Exposome of Human Milk across India (ExHuMId) version 1.0 containing detailed information on 101 environmental contaminants detected in human milk samples across 13 Indian states, compiled from 36 research articles. ExHuMId also compiles the detected concentrations of the contaminants, structural and physicochemical properties, and factors associated with the donor of the sample. We also present findings from a three-pronged analysis of ExHuMId and two other resources on human milk contaminants, with a focus on the Indian scenario. Through a comparative analysis with global chemical regulations and guidelines, we identify human milk contaminants of high concern, such as potential carcinogens, endocrine disruptors and neurotoxins. We then study the physicochemical properties of the contaminants to gain insights on their propensity to transfer into human milk. Lastly, we employ a systems biology approach to shed light on potential effects of human milk contaminants on maternal and infant health, by identifying contaminant-gene interactions associated with lactation, cytokine signalling and production, and protein-mediated transport. ExHuMId 1.0 is accessible online at: https://cb.imsc.res.in/exhumid/.


Subject(s)
Endocrine Disruptors , Exposome , Breast Feeding , Female , Humans , India , Infant , Infant, Newborn , Milk, Human
9.
Chemosphere ; 267: 128898, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33190914

ABSTRACT

The regulatory assessment of endocrine disrupting chemicals (EDCs) is complex due to the lack of a standardized definition of EDCs and validated testing criteria. In spite of these challenges, there is growing scientific interest in EDCs which has resulted in the rapid expansion of published literature on endocrine disruption upon chemical exposure. Here, we explore how academic research leading to curated knowledgebases can inform current chemical regulations on EDCs. To this end, we present an updated knowledgebase, DEDuCT 2.0, containing 792 potential EDCs with supporting evidence from 2218 research articles. Thereafter, we study the distribution of potential EDCs across several chemical lists that reflect guidelines for use or regulations. Further, to understand the scale of possible exposure to the potential EDCs present in chemical lists, we compare them with high production volume chemicals. Notably, we find many potential EDCs are in use across various product categories such as 'Food additives and Food contact materials' and 'Cosmetics and household products'. Several of these EDCs are also produced or manufactured in high volume across the world. Lastly, we illustrate using an example how diverse information in curated knowledgebases such as DEDuCT 2.0 can be helpful in the risk assessment of EDCs. In sum, we highlight the need to bridge the gap between academic and regulatory aspects of chemical safety, as a step towards the better management of environment and health hazards such as EDCs.


Subject(s)
Endocrine Disruptors , Endocrine Disruptors/toxicity , Endocrine System , Knowledge Bases , Risk Assessment
10.
Sci Total Environ ; 692: 281-296, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31349169

ABSTRACT

Human well-being can be affected by exposure to several chemicals in the environment. One such group is endocrine disrupting chemicals (EDCs) that can perturb the hormonal homeostasis leading to adverse health effects. In this work, we have developed a detailed workflow to identify EDCs with supporting evidence of endocrine disruption in published experiments in humans or rodents. Thereafter, this workflow was used to manually evaluate more than 16,000 published research articles and identify 686 potential EDCs with published evidence in humans or rodents. Importantly, we have compiled the observed adverse effects or endocrine-specific perturbations along with the dosage information for the potential EDCs from their supporting published experiments. Subsequently, the potential EDCs were classified based on the type of supporting evidence, their environmental source and their chemical properties. Additional compiled information for potential EDCs include their chemical structure, physicochemical properties, predicted ADMET properties and target genes. In order to enable future research based on this compiled information on potential EDCs, we have built an online knowledgebase, Database of Endocrine Disrupting Chemicals and their Toxicity profiles (DEDuCT), accessible at: https://cb.imsc.res.in/deduct/. After building this comprehensive resource, we have performed a network-centric analysis of the chemical space and the associated biological space of target genes of EDCs. Specifically, we have constructed two networks of EDCs using our resource based on similarity of chemical structures or target genes. Ensuing analysis revealed a lack of correlation between chemical structure and target genes of EDCs. Though our detailed results highlight potential challenges in developing predictive models for EDCs, the compiled information in our resource will undoubtedly enable future research in the field, especially, those focussed towards mechanistic understanding of the systems-level perturbations caused by EDCs.


Subject(s)
Endocrine Disruptors/toxicity , Environmental Pollutants/toxicity , Knowledge Bases , Animals , Humans , Rodentia
11.
Sci Rep ; 8(1): 4329, 2018 03 12.
Article in English | MEDLINE | ID: mdl-29531263

ABSTRACT

Phytochemicals of medicinal plants encompass a diverse chemical space for drug discovery. India is rich with a flora of indigenous medicinal plants that have been used for centuries in traditional Indian medicine to treat human maladies. A comprehensive online database on the phytochemistry of Indian medicinal plants will enable computational approaches towards natural product based drug discovery. In this direction, we present, IMPPAT, a manually curated database of 1742 Indian Medicinal Plants, 9596 Phytochemicals, And 1124 Therapeutic uses spanning 27074 plant-phytochemical associations and 11514 plant-therapeutic associations. Notably, the curation effort led to a non-redundant in silico library of 9596 phytochemicals with standard chemical identifiers and structure information. Using cheminformatic approaches, we have computed the physicochemical, ADMET (absorption, distribution, metabolism, excretion, toxicity) and drug-likeliness properties of the IMPPAT phytochemicals. We show that the stereochemical complexity and shape complexity of IMPPAT phytochemicals differ from libraries of commercial compounds or diversity-oriented synthesis compounds while being similar to other libraries of natural products. Within IMPPAT, we have filtered a subset of 960 potential druggable phytochemicals, of which majority have no significant similarity to existing FDA approved drugs, and thus, rendering them as good candidates for prospective drugs. IMPPAT database is openly accessible at: https://cb.imsc.res.in/imppat .


Subject(s)
Drug Discovery , Phytochemicals/chemistry , Plants, Medicinal/chemistry , Databases, Factual , Drug Discovery/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Humans , India , Medicine, Traditional , Phytochemicals/pharmacology , Phytotherapy , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
12.
Toxicol In Vitro ; 46: 166-177, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28951292

ABSTRACT

Citrinin (CTN) and ochratoxin A (OTA) can be present as co-contaminants in cereals, foods and feed commodities, and can affect human health. Metabolism-dependent toxicity of these two mycotoxins, separately as well as in combination, is not yet understood. To fill this gap we adopted integrated discrete multiple organ co-culture (IdMOC) technique, which obviates animal experiments from the perspectives of species difference as well as animal welfare concerns. IdMOC facilitates co-culture of a metabolically competent cell (HepG2) and a metabolically incompetent cell (3T3) that are physically separated but provides for extracellular product(s) from one cell to interact with the other. After ascertaining that HepG2 is metabolically competent and 3T3 is not, adopting luciferin-IPA metabolism assay, CTN and OTA were tested separately and in combination in the co-culture set-up, when both proved to be metabolism-dependent cytotoxic agents. Hepatocytes metabolize CTN into a diffusible product that is cytotoxic to 3T3 cells but the cytotoxicity of OTA appears to be limited to the hepatocytes, i.e., local acting. As a combination at a concentration of 20% of IC50 of each, CTN forms a reactive metabolite that diffuses out of HepG2 to cause cytotoxicity to 3T3 cells synergistically with OTA parent molecule. The CYP isoenzymes involved in the metabolism OTA and CTN were identified adopting in silico methods which indicated that OTA and CTN can bind CYP proteins at specific sites.


Subject(s)
Cell Survival/drug effects , Citrinin/pharmacology , Ochratoxins/pharmacology , Toxicity Tests/methods , 3T3 Cells , Animals , Binding Sites , Coculture Techniques , Cytochrome P-450 Enzyme System/metabolism , Hep G2 Cells , Humans , Mice , Models, Molecular , Protein Conformation
13.
Cell Biochem Biophys ; 76(1-2): 91-110, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28353142

ABSTRACT

Cytochrome P450 (CYP) 1A and 2B subfamily enzymes are important drug metabolizing enzymes, and are highly conserved across species in terms of sequence homology. However, there are major to minor structural and macromolecular differences which provide for species-selectivity and substrate-selectivity. Therefore, species-selectivity of CYP1A and CYP2B subfamily proteins across human, mouse and rat was analyzed using molecular modeling, docking and dynamics simulations when the chiral molecules quinine and quinidine were used as ligands. The three-dimensional structures of 17 proteins belonging to CYP1A and CYP2B subfamilies of mouse and rat were predicted by adopting homology modeling using the available structures of human CYP1A and CYP2B proteins as templates. Molecular docking and dynamics simulations of quinine and quinidine with CYP1A subfamily proteins revealed the existence of species-selectivity across the three species. On the other hand, in the case of CYP2B subfamily proteins, no role for chirality of quinine and quinidine in forming complexes with CYP2B subfamily proteins of the three species was indicated. Our findings reveal the roles of active site amino acid residues of CYP1A and CYP2B subfamily proteins and provide insights into species-selectivity of these enzymes across human, mouse, and rat.


Subject(s)
Cytochrome P-450 CYP1A1/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Animals , Binding Sites , Catalytic Domain , Cytochrome P-450 CYP1A1/chemistry , Cytochrome P-450 CYP2B1/chemistry , Cytochrome P-450 CYP2B1/metabolism , Humans , Hydrogen Bonding , Ligands , Mice , Molecular Conformation , Quinidine/chemistry , Quinidine/metabolism , Quinine/chemistry , Quinine/metabolism , Rats , Software , Species Specificity
14.
Mol Biosyst ; 12(7): 2119-34, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27194593

ABSTRACT

Cytochrome P450 (CYP) enzymes that degrade xenobiotics play a critical role in the metabolism and biotransformation of drugs and xenobiotics in humans as well as experimental animal models such as mouse and rat. These proteins function as a network collectively as well as independently. Though there are several reports on the organization, regulation and functionality of various CYP enzymes at the molecular level, the understanding of organization and functionality of these proteins at the holistic level remain unclear. The objective of this study is to understand the organization and functionality of xenobiotic degrading CYP enzymes of human, mouse and rat using network theory approaches and to study species differences that exist among them at the holistic level. For our analysis, a protein-protein interaction (PPI) network for CYP enzymes of human, mouse and rat was constructed using the STRING database. Topology, centrality, modularity and robustness analyses were performed for our predicted CYP PPI networks that were then validated by comparison with randomly generated network models. Network centrality analyses of CYP PPI networks reveal the central/hub proteins in the network. Modular analysis of the CYP PPI networks of human, mouse and rat resulted in functional clusters. These clusters were subjected to ontology and pathway enrichment analysis. The analyses show that the cluster of the human CYP PPI network is enriched with pathways principally related to xenobiotic/drug metabolism. Endo-xenobiotic crosstalk dominated in mouse and rat CYP PPI networks, and they were highly enriched with endogenous metabolic and signaling pathways. Thus, cross-species comparisons and analyses of human, mouse and rat CYP PPI networks gave insights about species differences that existed at the holistic level. More investigations from both reductionist and holistic perspectives can help understand CYP metabolism and species extrapolation in a much better way.


Subject(s)
Biotransformation , Cytochrome P-450 Enzyme System/metabolism , Protein Interaction Mapping , Protein Interaction Maps , Xenobiotics/metabolism , Animals , Cluster Analysis , Computational Biology/methods , Databases, Protein , Humans , Isoenzymes , Mice , Protein Interaction Mapping/methods , Rats , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...