Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Microorganisms ; 11(12)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38138109

ABSTRACT

Fungal diseases, including downy mildew (caused by Plasmopara viticola) and gray mold (caused by Botrytis cinerea), significantly impact the marketable yield of grapes produced worldwide. Cytochrome b of the mitochondrial respiratory chain of these two fungi is a key target for Quinone outside inhibitor (QoI)-based fungicide development. Since the mode of action (MOA) of QoI fungicides is restricted to a single site, the extensive usage of these fungicides has resulted in fungicide resistance. The use of fungicide combinations with multiple targets is an effective way to counter and slow down the development of fungicide resistance. Due to the high cost of in planta trials, in silico techniques can be used for the rapid screening of potential fungicides. In this study, a combination of in silico simulations that include Schrödinger Glide docking, molecular dynamics, and Molecular Mechanism-Generalized Born Surface Area calculation were used to screen the most potent QoI and non-QoI-based fungicide combinations to wild-type, G143A-mutated, F129L-mutated, and double-mutated versions that had both G143A and F129L mutations of fungal cytochrome b. In silico docking studies indicated that mandestrobin, famoxadone, captan, and thiram have a high affinity toward WT cytochrome b of Botrytis cinerea. Although the QoIs mandestrobin and famoxadone were effective for WT based on in vitro results, they were not broadly effective against G143A-mutated isolates. Famoxadone was only effective against one isolate with G143A-mutated cytochrome b. The non-QoI fungicides thiram and captan were effective against both WT and isolates with G143A-mutated cytochrome b. Follow-up in silico docking and molecular dynamics studies suggested that fungicide combinations consisting of famoxadone, mandestrobin, fenamidone, and thiram should be considered in field testing targeting Plasmopara viticola and Botrytis cinerea fungicide resistance.

2.
Environ Sci Technol ; 57(5): 2093-2104, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36696288

ABSTRACT

Greenhouse gas (GHG) emissions from integrated urban drainage systems (IUDSs), including sewer, wastewater treatment plants (WWTPs), and receiving water systems, have not yet been integrated due to the lack of modeling tools. Here, we updated the computable general equilibrium-based System Dynamics and Water Environmental Model (CGE-SyDWEM), a recently developed model simulating the water-energy-carbon nexus at the watershed level, to calculate the direct and indirect (electricity use and external) GHG emissions from IUDSs considering carbon mitigation strategies and water engineering practices. The updated CGE-SyDWEM was applied to an estuary watershed in Shenzhen, the fourth largest city in China. With increasing socio-economic development and water infrastructure systems upgrading, GHG emissions are projected to increase from 129.2 (95% CI: 95.9-162.5) kt in 2007 to 190.7 (144.8-236.6) kt in 2025, with 89% from WWTPs (direct: 17%; electricity use: 65%; and external: 7%), 10% from the sewer (direct: 1% and electricity use: 9%) and 1% from receiving waters (direct). Carbon mitigation can reduce GHG emissions by 7% and emission intensity by 6% by 2025, with 63% contributed by external emission reduction from chemical uses. The integrated model can aid water, energy, and carbon decision-makers in finding cost-effective solutions for water and energy security in the future.


Subject(s)
Greenhouse Gases , Carbon , Water , Carbon Dioxide/analysis , China , Greenhouse Effect
3.
Sci Total Environ ; 819: 152502, 2022 May 01.
Article in English | MEDLINE | ID: mdl-34995610

ABSTRACT

Vegetable crops have varied heavy metal(loid)s accumulation rates from soils to their edible tissues. However, crop selection has been seldom evaluated as a strategy for reducing the health risks of ingesting vegetables grown in soils contaminated by treated wastewater (TWW) irrigation. We cultivated twenty commonly grown vegetables using soils with an approximately 50-year history of TWW irrigation, and their ingestion risks were evaluated by the health risk index (HRI). Results showed that twenty vegetable species had varied abilities in accumulating heavy metal(loid)s from soils to their edible parts (e.g., >100 times of difference for Cd). We found higher potential health risks (HRI > 1) due to As, Cd, and Pb for adults ingesting few vegetable species and all the studied vegetables had negligible health risks (HRI < 1) for Cr, Cu, and Zn. These results suggest that remediation strategies should be targeted towards As, Cd, and Pb removal in agricultural soils in this region. Total HRI > 5 was obtained for ingesting spinach, Chinese lettuce, and Chinese chives, suggesting a high potential of severe health risks. Negligible risks (total HRI < 1) were found for tomato, kidney bean, potato, and cabbage. Our study highlights crop selection as a feasible strategy for ensuring food safety in TWW contaminated farmlands.


Subject(s)
Metals, Heavy , Soil Pollutants , Adult , Environmental Monitoring , Humans , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis , Vegetables , Wastewater/analysis
4.
Article in English | MEDLINE | ID: mdl-34427159

ABSTRACT

Water reuse programs are being explored to close the gap between supply and demand for irrigation in agriculture. However, these sources could contain hazardous microbial contaminants, and pose risks to public health. This study aimed to grow and irrigate romaine lettuce with inoculated wastewater effluent to track AP205 bacteriophage prevalence through cultivation and post-harvest storage. AP205 is a bacteriophage and was used as a surrogate for enteric viruses. Low and high dosages (mean ± standard deviation) of AP205 at 4.8 ± 0.4 log PFU/mL and 6.6 ± 0.2 log PFU/mL; respectively, were prepared to examine viral load influence on contamination levels. Foliage, leachate, and soil contamination levels were directly related to AP205 concentrations in the effluent. AP205 concentrations increased throughout cultivation for foliage and leachate, suggesting bacteriophage accumulation. During post-harvest storage (14 day at 4 °C), there was a significant decrease in AP205 concentration on the foliage. Results show that wastewater effluents usage for leafy greens cultivation can pose risks to humans and additional steps are required to safely apply wastewater effluents to soils and crops.


Subject(s)
Bacteriophages , Enterovirus , Food Contamination/analysis , Humans , Lactuca , Wastewater
5.
Front Microbiol ; 12: 660047, 2021.
Article in English | MEDLINE | ID: mdl-34093474

ABSTRACT

High demand for food and water encourages the exploration of new water reuse programs, including treated municipal wastewater usage. However, these sources could contain high contaminant levels posing risks to public health. The objective of this study was to grow and irrigate a leafy green (romaine lettuce) with treated wastewater from a municipal wastewater treatment plant to track Escherichia coli and antibiotic-resistant microorganisms through cultivation and post-harvest storage to assess their fate and prevalence. Contamination levels found in the foliage, leachate, and soil were directly (p < 0.05) related to E. coli concentrations in the irrigation water. Wastewater concentrations from 177 to 423 CFU ml-1 resulted in 15-25% retention in the foliage. Leachate and soil presented means of 231 and 116% retention, respectively. E. coli accumulation on the foliage was observed (p < 0.05) and increased by over 400% during 14-day storage (4°C). From randomly selected E. coli colonies, in all four biomass types, 81 and 34% showed resistance to ampicillin and cephalothin, respectively. Reclaimed wastewater usage for leafy greens cultivation could pose potential health risks, especially considering the bacteria found have a high probability of being antibiotic resistance. Successful reuse of wastewater in agriculture will depend on appropriate mitigation and management strategies to guarantee an inexpensive, efficient, and safe water supply.

6.
Front Microbiol ; 12: 657353, 2021.
Article in English | MEDLINE | ID: mdl-34108949

ABSTRACT

Development and spread of antimicrobial resistance (AMR) and multidrug resistance (MDR) through propagation of antibiotic resistance genes (ARG) in various environments is a global emerging public health concern. The role of wastewater treatment plants (WWTPs) as hot spots for the dissemination of AMR and MDR has been widely pointed out by the scientific community. In this study, we collected surface water samples from sites upstream and downstream of two WWTP discharge points in an urban watershed in the Bryan-College Station (BCS), Texas area, over a period of nine months. E. coli isolates were tested for resistance to ampicillin, tetracycline, sulfamethoxazole, ciprofloxacin, cephalothin, cefoperazone, gentamycin, and imipenem using the Kirby-Bauer disc diffusion method. Antimicrobial resistant heterotrophic bacteria were cultured on R2A media amended with ampicillin, ciprofloxacin, tetracycline, and sulfamethoxazole for analyzing heterotrophic bacteria capable of growth on antibiotic-containing media. In addition, quantitative real-time polymerase chain reaction (qPCR) method was used to measure eight ARG - tetA, tetW, aacA, ampC, mecA, ermA, blaTEM, and intI1 in the surface water collected at each time point. Significant associations (p < 0.05) were observed between the locations of sampling sites relative to WWTP discharge points and the rate of E. coli isolate resistance to tetracycline, ampicillin, cefoperazone, ciprofloxacin, and sulfamethoxazole together with an increased rate of isolate MDR. The abundance of antibiotic-resistant heterotrophs was significantly greater (p < 0.05) downstream of WWTPs compared to upstream locations for all tested antibiotics. Consistent with the results from the culture-based methods, the concentrations of all ARG were substantially higher in the downstream sites compared to the upstream sites, particularly in the site immediately downstream of the WWTP effluent discharges (except mecA). In addition, the Class I integron (intI1) genes were detected in high amounts at all sites and all sampling points, and were about ∼20 times higher in the downstream sites (2.5 × 107 copies/100 mL surface water) compared to the upstream sites (1.2 × 106 copies/100 mL surface water). Results suggest that the treated WWTP effluent discharges into surface waters can potentially contribute to the occurrence and prevalence of AMR in urban watersheds. In addition to detecting increased ARG in the downstream sites by qPCR, findings from this study also report an increase in viable AMR (HPC) and MDR (E. coli) in these sites. This data will benefit establishment of improved environmental regulations and practices to help manage AMR/MDR and ARG discharges into the environment, and to develop mitigation strategies and effective treatment of wastewater.

7.
3 Biotech ; 9(1): 35, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30622873

ABSTRACT

Thirteen (13) endophytic bacterial strains were isolated from Echinochloa crus-galli (Cockspur grass) and Cynodon dactylon (Bermuda grass) growing in an oil-contaminated site at a petroleum storage and transportation facility. Of the 13 strains assessed for their potential to degrade monoaromatic compounds (phenol, toluene, and xylene) and diesel and for their plant growth promoting (PGP) ability (phosphate solubilization, siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase production), isolate J10 (identified as Pseudomonas sp. by 16S rRNA gene sequencing) was found to the best diesel biodegrader with the best PGP traits. The Monod model used for Pseudomonas sp. J10 growth kinetics on diesel fuel as the sole carbon source showed that the maximum specific bacterial growth rate was 0.0644 h- 1 and the half velocity constant (K s ) was estimated as 4570 mg L- 1. The overall growth yield coefficient and apparent growth yield were determined to be 0.271 g h- 1 and 0.127 g cells/g substrate, respectively. Pseudomonas sp. J10 removed 69% diesel in four days as determined by gas chromatographic (GC) analysis. These findings could assist in developing an endophyte assisted efficient diesel biodegradation system using Pseudomonas sp. J10 isolated from Echinochloa crus-galli.

8.
Environ Sci Technol ; 53(3): 1715-1724, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30620567

ABSTRACT

Carbon mitigation strategies have been developed without sufficient consideration of their impacts on the water system. Here, our study evaluates whether carbon mitigation strategies would decrease or increase local industrial water use and water-related pollutants discharge by using a computable general equilibrium (CGE) model coupled with a water withdrawals and pollutants discharge module in Shenzhen, the fourth largest city in China. To fulfill China's Nationally Determined Contributions (NDC) targets, Shenzhen's GDP and welfare losses are projected to be 1.6% and 5.6% in 2030, respectively. The carbon abatement cost will increase from 56 USD/t CO2 in 2020 to 274 USD/t CO2 in 2030. The results reveal that carbon mitigation accelerates local industrial structure upgrading by restricting carbon-, energy-, and water-intensive industries, e.g., natural gas mining, nonmetal, agriculture, food production, and textile sectors. Accordingly, carbon mitigation improves energy use efficiency and decreases 55% of primary energy use in 2030. Meanwhile, it reduces 4% of total industrial water use and 2.2-2.4% of two major pollutants discharge, i.e., CODCr and NH3-N. Carbon mitigation can also decrease petroleum (2.2%) and V-ArOH (0.8%) discharge but has negative impacts on most heavy metal(loid)s pollutants discharge (increased by -0.01% to 4.6%). These negative impacts are evaluated to be negligible on the environment. This study highlights the importance of considering the energy-water nexus for better-coordinated energy and water resources management at local and national levels.


Subject(s)
Carbon , Environmental Pollutants , Carbon Dioxide , China , Water
9.
J Mol Model ; 24(12): 347, 2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30498917

ABSTRACT

Low-temperature methane oxidation is one of the greatest challenges in energy research. Although methane monooxygenase (MMO) does this catalysis naturally, how to use this biocatalyst in a fuel cell environment where the electrons generated during the oxidation process is harvested and used for energy generation has not yet been investigated. A key requirement to use this enzyme in a fuel cell is wiring of the active site of the enzyme directly to the supporting electrode. In soluble MMO (sMMO), two cofactors, i.e., nicotinamide adenine di-nucleotide (NAD+) and flavin adenine dinucleotide (FAD) provide opportunities for direct attachment of the enzyme system to a supporting electrode. However, once modified to be compatible with a supporting metal electrode via FeS functionalization, how the two cofactors respond to complex binding phenomena is not yet understood. Using docking and molecular dynamic simulations, modified cofactors interactions with sMMO-reductase (sMMOR) were studied. Studies revealed that FAD modification with FeS did not interfere with binding phenomena. In fact, FeS introduction significantly improved the binding affinity of FAD and NAD+ on sMMOR. The simulations revealed a clear thermodynamically more favorable electron transport path for the enzyme system. This system can be used as a fuel cell and we can use FeS-modified-FAD as the anchoring molecule as opposed to using NAD+. The overall analysis suggests the strong possibility of building a fuel cell that could catalyze methane oxidation using sMMO as the anode biocatalyst.


Subject(s)
Apoenzymes/chemistry , Bacterial Proteins/chemistry , Coenzymes/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Oxygenases/chemistry , Apoenzymes/metabolism , Bacterial Proteins/metabolism , Biocatalysis , Catalytic Domain , Coenzymes/metabolism , Computational Biology/methods , Electron Transport , Methane/metabolism , Methylococcus capsulatus/enzymology , Oxygenases/metabolism , Protein Binding , Protein Domains , Protein Engineering/methods , Reproducibility of Results , Substrate Specificity
10.
J Environ Qual ; 47(5): 949-957, 2018 09.
Article in English | MEDLINE | ID: mdl-30272791

ABSTRACT

This research examines the relationship of concentrations to stream order and watershed size and considers the implications on water quality standards. To assess geospatial effects, data were obtained from 743 monitoring stations in the Central Great Plains, Cross Timbers, and South Central Plains ecoregions of Texas and Oklahoma. Median and geometric mean concentrations were analyzed for correlation with stream order and watershed size at each site. Comparison of the three ecoregions revealed concentrations were highest in the westernmost Central Great Plains and lowest in the easternmost South Central Plains. Similarly, the strength of 's correlation with stream order and watershed area decreased with ecoregion moving west to east. Thus, incorporating ecoregion approaches when defining stream water quality standards is supported. Analysis showed no significant relationship of stream order or watershed size to concentrations in least-impacted watersheds (i.e., watersheds with minimal wastewater discharge and urbanization). Conversely, analysis of data from all sites showed a weak negative relationship between concentration and stream order and watershed size, with concentration generally decreasing with increasing stream order and watershed size. However, variability in smaller watersheds and lower-order streams supports continued use of site-specific studies to determine appropriate standards. Three-parameter exponential models provided an approach to estimate concentrations using Shreve stream order and watershed area and identify outlier streams potentially affected by anthropogenic activities where further investigation or remediation may be warranted.


Subject(s)
Escherichia coli , Water Quality , Oklahoma , Texas , Wastewater
11.
J Environ Manage ; 225: 93-103, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30075307

ABSTRACT

Energy and water systems are interdependent and have complex dynamic interactions with the socio-economic system and climate change. Few tools exist to aid decision-making regarding the management of water and energy resources at a watershed level. In this study, a Computable General Equilibrium (CGE) model and System Dynamics and Water Environmental Model (SyDWEM) were integrated (CGE-SyDWEM) to predict future energy use, CO2 emissions, economic growth, water resource stress, and water quality change in a rapidly urbanizing catchment in China. The effects of both the CO2 mitigation strategies and water engineering measures were evaluated. CO2 mitigation strategies have the potential to reduce 46% CO2 emissions and 41% energy use in 2025 compared with reference scenario. CO2 mitigation strategies are also found to be effective in promoting industrial structure adjustment by decreasing the output of energy- and water-intensive industries. Accordingly, it can alleviate local water stress and improve water environment, including a 4.1% reduction in both domestic water use and pollutant emissions, a 16.8% water demand reduction in the labor-intensive industry sector, and 4.2% and 4.4% decrease in BOD5 and NH3-N loads in all industrial sectors, respectively. It is necessary to implement water engineering measures to further alleviate water resource stress and improve water quality. This study improves the understanding of the feedbacks of CO2 abatement on water demand, pollutant discharges, and water quality improvement. The integrated model developed in this study can be used to aid energy, carbon, and water policy makers to understand the complicated synergistic effects of proposed CO2 mitigation strategies on water demand and pollution emissions, and to design more effective policies and measures to ensure energy and water security in the future.


Subject(s)
Carbon , Climate Change , Water Resources , Carbon Dioxide , China , Water
12.
Water Res ; 144: 87-103, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30014982

ABSTRACT

Pathogen contamination is a major cause of surface water impairment in the United States, and fecal bacteria levels are typically used to evaluate microbial loading in bodies of water. Environmental models are considered a useful tool for evaluating watershed management practices. In this study, we assessed E. coli contamination of the Upper Stroubles Creek, Virginia, USA using the Soil and Water Assessment Tool (SWAT) model. The study area has been declared an impaired body of water due to recent bacterial contamination. Bacterial source characterizations play a critical role in such modeling exercises and especially in the case of non-point sources. As the SWAT model involves bacteria load estimation at a Hydrological Response Unit (HRU) level, we use the Spatially Explicit Load Enrichment Calculation Tool (SELECT) for our E. coli load estimations. We also evaluate current approaches to the measurement of bacterial interactions of the sediment-water interface using SWAT and the frequent measurements of streambed E. coli concentrations. For the simulation of in-stream E. coli concentrations using estimates drawn from SELECT without (with) sediment bacteria resuspension-deposition, Nash-Sutcliffe Efficiency (NSE) values of -0.41 to 0.34 (-0.19 to 0.36) are found. Moreover, in-stream E. coli concentrations measured at flow duration intervals show that the model frequently overestimates mid-range flows while underestimating low-range flows even with model improvements. The use of high-resolution E. coli loads and the consideration of sediment bacteria resuspension-deposition processes, generated higher E. coli concentrations for forested areas compared to those of urban and pasture lands, suggesting the importance of using detailed bacteria load estimations and land use information when assessing E. coli distribution in the environment.


Subject(s)
Escherichia coli , Models, Theoretical , Rivers/microbiology , Water Microbiology , Cities , Feces/microbiology , Geologic Sediments/microbiology , Hydrology , Virginia
13.
Environ Technol ; 39(13): 1705-1714, 2018 Jul.
Article in English | MEDLINE | ID: mdl-28562230

ABSTRACT

The presence of benzene and phenol in the environment can lead to serious health effects in humans and warrant development of efficient cleanup strategies. The aim of the present work was to assess the potential of indigenous endophytic bacterial strains to degrade benzene and phenol. Seven strains were successfully isolated from Cannabis sativa plants irrigated with oil refinery wastewater. Molecular characterization was performed by 16S rRNA gene sequencing. Phenol was biodegraded almost completely with Achromobacter sp. (AIEB-7), Pseudomonas sp. (AIEB-4), and Alcaligenes sp. (AIEB-6) at 250, 500, and 750 mg L-1; however, the degradation was only 81%, 72%, and 69%, respectively, when exposed to 1000 mg L-1. Bacillus sp. (AIEB-1), Enterobacter sp. (AIEB-3), and Acinetobacter sp. (AIEB-2) degraded benzene significantly at 250, 500, and 750 mg L-1. However, these strains showed 80%, 72%, and 68% benzene removal at 1000 mg L-1 exposure, respectively. Rates of degradation could be modeled with first-order kinetics with rate constant values of 1.86 × 10-2 for Pseudomonas sp. (AIEB-4) and 1.80 × 10-2 h-1 for Bacillus sp. (AIEB-1) and half-lives of 1.5 and 1.6 days, respectively. These results establish a foundation for further testing of the phytoremediation of hydrocarbon-contaminated soils in the presence of these endophytic bacteria.


Subject(s)
Benzene/chemistry , Biodegradation, Environmental , Cannabis , Phenol/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , RNA, Ribosomal, 16S
14.
Article in English | MEDLINE | ID: mdl-27050143

ABSTRACT

In this study, effects of 24 kHz continuous ultrasound and UV-C on inactivation and potential repair of environmental E. coli strains were studied through a culture based method and a metabolic activity assay. Three environmental E. coli strains isolated from fecal samples of feral hog and deer and treated wastewater effluent were studied and compared with a laboratory E. coli strain (ATCC® 10798). Metabolic activity of E. coli cells during the inactivation and repair period was assessed using the AlamarBlue® assay. Transmission electron microscopy assays were also performed to evaluate morphological damage of bacterial cell wall. After 24 h of photoreactivation period, laboratory E. coli strain (ATCC® 10798) reactivated by 30% and 42% in contrast to E. coli isolate from treated wastewater effluent, which reactivated by 53% and 82% after ultrasound and UV-C treatment, respectively. Possible shearing and reduction in cell size of E. coli strains exposed to ultrasound was revealed by transmission electron micrographs. Metabolic activity of E. coli strains was greatly reduced due to morphological damage to cell membrane caused by 24 kHz continuous ultrasound. Based upon experimental data and TEM micrographs, it could be concluded that ultrasound irradiation has potential in advanced water treatment and water reuse applications.


Subject(s)
Disinfection/methods , Escherichia coli/radiation effects , Water Microbiology , Water Purification/methods , Escherichia coli/physiology , Humans , Ultrasonics , Ultraviolet Rays , Wastewater/microbiology
15.
Article in English | MEDLINE | ID: mdl-26943637

ABSTRACT

Biological oxidation has been researched as a viable alternative for treating waters with high manganese (Mn) concentrations, typically found in mine drainage or in some geological formations. In this study, laboratory-scale trickling filters were constructed to compare the Mn removal efficiency between filters inoculated with the Mn oxidizing bacteria, Pseudomonas putida, and filters without inoculation. Manganese oxidation and removal was found to be significantly greater in trickling filters with Pseudomonas putida after startup times of only 48 h. Mn oxidation in Pseudomonas putida inoculated trickling filters was up to 75% greater than non-inoculated filters. One-dimensional advective-dispersive models were formulated to describe the transport of Mn in trickling filter porous media. Based on the experimental transport parameters obtained, the model predicted that a filter depth of only 16 cm is needed to reduce influent concentration of 10 mg L(-1) to 0.05 mg L(-1).


Subject(s)
Manganese/metabolism , Pseudomonas putida/metabolism , Water Pollutants, Chemical/metabolism , Water Purification , Biodegradation, Environmental , Filtration , Humans , Industrial Waste , Mining , Oxidation-Reduction
16.
Article in English | MEDLINE | ID: mdl-26301848

ABSTRACT

In this study, bactericidal effects of 24 kHz ultrasound, ultraviolet (UV-C) irradiation, and titanium dioxide (TiO2) photocatalyst were studied on inactivation of Aeromonas hydrophila, an emerging pathogen listed on the US Environmental Protection Agency's (US EPA) candidate contaminant list. Metabolic activity (using the AlamarBlue dye) assays were performed to assess the residual activity of the microbial cells after the disinfection treatments along with culture-based methods. A faster inactivation rate of 1.52 log min(-1) and inactivation of 7.62 log10 was observed within 5 min of ultrasound exposure. Ultrasound treated cells repaired by 1.4 log10 in contrast to 5.3 log10 repair for UV-C treated cells. Ultrasound treatment significantly lowered the reactivation of Aeromonas hydrophila in comparison to UV-C- and UV-C-induced photocatalysis. Ultrasound appeared to be an effective means of inactivating Aeromonas hydrophila and could be used as a potential disinfection method for water and wastewater reuse.


Subject(s)
Aeromonas hydrophila/radiation effects , Disinfection/methods , Light , Ultrasonic Waves , Ultraviolet Rays , Aeromonas hydrophila/drug effects , Catalysis/radiation effects , Kinetics , Microbial Sensitivity Tests , Microbial Viability/drug effects , Microbial Viability/radiation effects , Titanium/pharmacology , United States , Wastewater/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...