Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Biofuels ; 13: 10, 2020.
Article in English | MEDLINE | ID: mdl-31988662

ABSTRACT

BACKGROUND: Molecular-scale mechanisms of the enzymatic breakdown of cellulosic biomass into fermentable sugars are still poorly understood, with a need for independent measurements of enzyme kinetic parameters. We measured binding times of cellobiohydrolase Trichoderma reesei Cel7A (Cel7A) on celluloses using wild-type Cel7A (WTintact), the catalytically deficient mutant Cel7A E212Q (E212Qintact) and their proteolytically isolated catalytic domains (CD) (WTcore and E212Qcore, respectively). The binding time distributions were obtained from time-resolved, super-resolution images of fluorescently labeled enzymes on cellulose obtained with total internal reflection fluorescence microscopy. RESULTS: Binding of WTintact and E212Qintact on the recalcitrant algal cellulose (AC) showed two bound populations: ~ 85% bound with shorter residence times of < 15 s while ~ 15% were effectively immobilized. The similarity between binding times of the WT and E212Q suggests that the single point mutation in the enzyme active site does not affect the thermodynamics of binding of this enzyme. The isolated catalytic domains, WTcore and E212Qcore, exhibited three binding populations on AC: ~ 75% bound with short residence times of ~ 15 s (similar to the intact enzymes), ~ 20% bound for < 100 s and ~ 5% that were effectively immobilized. CONCLUSIONS: Cel7A binding to cellulose is driven by the interactions between the catalytic domain and cellulose. The cellulose-binding module (CBM) and linker increase the affinity of Cel7A to cellulose likely by facilitating recognition and complexation at the substrate interface. The increased affinity of Cel7A to cellulose by the CBM and linker comes at the cost of increasing the population of immobilized enzyme on cellulose. The residence time (or inversely the dissociation rates) of Cel7A on cellulose is not catalysis limited.

2.
J Sci Food Agric ; 99(6): 3034-3044, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30488472

ABSTRACT

BACKGROUND: Cassava leaves are an abundant global agricultural residue because the roots are a major source of dietary carbohydrates. Although cassava leaves are high in protein, the protein is not bioavailable. This work aimed to convert cassava leaves to a bioavailable protein-rich animal feed ingredient using high-protein yeasts. RESULTS: The structural proteins (ca 200 g kg-1 d.b.) from sundried cassava leaves were solubilized by mild alkali pretreatment, and the resulting cassava leaf hydrolysate (CLH) was used to screen for growth of 46 high-protein yeasts from 30 species. Promising candidates from the initial screen cultivated at a 10 mL scale demonstrated increases in relative abundance of essential amino acids over that of CLH. In particular, lysine, growth-limiting for some livestock, was increased up to 226% over the CLH content. One yeast, Pichia kudriavzevii UCDFST 11-602, was grown in 3 L of CLH in a bioreactor to examine the scale-up potential of the yeast protein production. While glucose was completely consumed, yeast growth exited log phase before depleting either carbon or nitrogen, suggesting other growth-limiting factors at the larger scale. CONCLUSIONS: High-value animal feed with enriched essential amino acid profiles can be produced by yeasts grown on agricultural residues. Yeasts convert structural protein solubilized from cassava leaves to essential amino acid-enriched, digestible protein. The low carbohydrate content of the leaves (ca 200 g kg-1 d.b.), however, necessitated glucose supplementation for yeast growth. © 2018 Society of Chemical Industry.


Subject(s)
Manihot/microbiology , Pichia/metabolism , Plant Leaves/metabolism , Animal Feed/analysis , Biomass , Biotransformation , Manihot/chemistry , Manihot/metabolism , Pichia/growth & development , Plant Leaves/chemistry , Plant Leaves/microbiology
3.
Biotechnol Bioeng ; 114(7): 1369-1385, 2017 07.
Article in English | MEDLINE | ID: mdl-28244589

ABSTRACT

Bioconversion of lignocellulose forms the basis for renewable, advanced biofuels, and bioproducts. Mechanisms of hydrolysis of cellulose by cellulases have been actively studied for nearly 70 years with significant gains in understanding of the cellulolytic enzymes. Yet, a full mechanistic understanding of the hydrolysis reaction has been elusive. We present a review to highlight new insights gained since the most recent comprehensive review of cellulose hydrolysis kinetic models by Bansal et al. (2009) Biotechnol Adv 27:833-848. Recent models have taken a two-pronged approach to tackle the challenge of modeling the complex heterogeneous reaction-an enzyme-centric modeling approach centered on the molecularity of the cellulase-cellulose interactions to examine rate limiting elementary steps and a substrate-centric modeling approach aimed at capturing the limiting property of the insoluble cellulose substrate. Collectively, modeling results suggest that at the molecular-scale, how rapidly cellulases can bind productively (complexation) and release from cellulose (decomplexation) is limiting, while the overall hydrolysis rate is largely insensitive to the catalytic rate constant. The surface area of the insoluble substrate and the degrees of polymerization of the cellulose molecules in the reaction both limit initial hydrolysis rates only. Neither enzyme-centric models nor substrate-centric models can consistently capture hydrolysis time course at extended reaction times. Thus, questions of the true reaction limiting factors at extended reaction times and the role of complexation and decomplexation in rate limitation remain unresolved. Biotechnol. Bioeng. 2017;114: 1369-1385. © 2017 Wiley Periodicals, Inc.


Subject(s)
Cellulases/chemistry , Cellulases/ultrastructure , Cellulose/chemistry , Models, Chemical , Models, Molecular , Binding Sites , Computer Simulation , Enzyme Activation , Hydrolysis , Kinetics , Protein Binding , Structure-Activity Relationship
4.
Biotechnol Bioeng ; 114(3): 533-542, 2017 03.
Article in English | MEDLINE | ID: mdl-27696345

ABSTRACT

Cellulosic biomass is the most promising feedstock for renewable biofuel production; however, the mechanisms of the heterogeneous cellulose saccharification reaction are still unsolved. As cellulases need to bind isolated molecules of cellulose at the surface of insoluble cellulose fibrils or larger aggregated cellulose structures in order to hydrolyze glycosidic bonds, the "accessibility of cellulose to cellulases" is considered to be a reaction limiting property of cellulose. We have defined the accessibility of cellulose to cellulases as the productive binding capacity of cellulose, that is, the concentration of productive binding sites on cellulose that are accessible for binding and hydrolysis by cellulases. Productive cellulase binding to cellulose results in hydrolysis and can be quantified by measuring hydrolysis rates. In this study, we measured the productive Trichoderma reesei Cel7A (TrCel7A) binding capacity of five cellulosic substrates from different sources and processing histories. Swollen filter paper and bacterial cellulose had higher productive binding capacities of ∼6 µmol/g while filter paper, microcrystalline cellulose, and algal cellulose had lower productive binding capacities of ∼3 µmol/g. Swelling and regenerating filter paper using phosphoric acid increased the initial accessibility of the reducing ends to TrCel7A from 4 to 6 µmol/g. Moreover, this increase in initial productive binding capacity accounted in large part for the difference in the overall digestibility between filter paper and swollen filter paper. We further demonstrated that an understanding of how the productive binding capacity declines over the course of the hydrolysis reaction has the potential to predict overall saccharification time courses. Biotechnol. Bioeng. 2017;114: 533-542. © 2016 Wiley Periodicals, Inc.


Subject(s)
Cellulase/chemistry , Cellulase/metabolism , Cellulose/analysis , Cellulose/metabolism , Bioreactors , Cellulose/chemistry , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Hydrolysis , Protein Binding , Trichoderma/enzymology
5.
Appl Biochem Biotechnol ; 179(7): 1227-47, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27039400

ABSTRACT

Tomato pomace is an abundant lignocellulosic waste stream from industrial tomato processing and therefore a potential feedstock for production of renewable biofuels. However, little research has been conducted to determine if pretreatment can enhance release of fermentable sugars from tomato pomace. Ionic liquids (ILs) are an emerging pretreatment technology for lignocellulosic biomass to increase enzymatic digestibility and biofuel yield while utilizing recyclable chemicals with low toxicity. In this study, pretreatment of tomato pomace with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) was investigated. Changes in pomace enzymatic digestibility were affected by pretreatment time and temperature. Certain pretreatment conditions significantly improved reducing sugar yield and hydrolysis time compared to untreated pomace. Compositional analyses suggested that pretreatment primarily removed water-soluble compounds and enriched for lignocellulose in pomace, with only subtle changes to the composition of the lignocellulose. While tomato pomace was effectively pretreated with [C2mim][OAc] to improve enzymatic digestibility, as of yet, unknown factors in the pomace caused ionic liquid pretreatment to negatively affect anaerobic digestion of pretreated material. This result, which is unique compared to similar studies on IL pretreatment of grasses and woody biomass, highlights the need for additional research to determine how the unique chemical composition of tomato pomace and other lignocellulosic fruit residues may interact with ionic liquids to generate inhibitors for downstream fermentation to biofuels.


Subject(s)
Biofuels , Lignin/chemistry , Monosaccharides/biosynthesis , Solanum lycopersicum/chemistry , Biomass , Cellulase/chemistry , Fermentation , Hydrolysis , Ionic Liquids/pharmacology , Lignin/biosynthesis , Medical Waste Disposal , Monosaccharides/chemistry , Temperature
6.
Bioresour Technol ; 167: 232-40, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24983695

ABSTRACT

Rice straw was pretreated with sodium hydroxide and subsequently conditioned to reduce the pH to 5-6 by either: (1) extensive water washing or (2) acidification with hydrochloric acid then water washing. Alkali pretreatment improved the enzymatic digestibility of rice straw by increasing the cellulose accessibility to cellulases. However, acidification after pretreatment reversed the gains in cellulose accessibility to cellulases and enzymatic digestibility due to precipitation of solubilized compounds. Surface composition analyses by ToF-SIMS confirmed a reduction in surface lignin by pretreatment and water washing, and suggested that acidification precipitated a chemically modified form of lignin on the surfaces of rice straw. The spin-spin relaxation times (T2) of the samples indicated increased porosity in alkali pretreated rice straw. The acidified pretreated rice straw had reduced amounts of water in the longer T2 proton pools associated with water in the pores of the biomass likely due to back-filling by the precipitated components.


Subject(s)
Biotechnology/methods , Cellulases/metabolism , Cellulose/metabolism , Oryza/drug effects , Sodium Hydroxide/pharmacology , Waste Products , Biomass , Chemical Precipitation , Hydrochloric Acid/pharmacology , Hydrolysis/drug effects , Lignin/analysis , Porosity , Principal Component Analysis , Proton Magnetic Resonance Spectroscopy , Surface Properties , Water
7.
Bioresour Technol ; 111: 240-7, 2012 May.
Article in English | MEDLINE | ID: mdl-22342045

ABSTRACT

The enzymatic hydrolysis of cellulosic material is a key step in the biochemical routes for production of renewable fuels and chemicals. This must be performed at high solids to be economically viable. High solids operations creates numerous processing challenges, most importantly the limitations due to mass transfer and poor mixing of enzymes in the cellulose suspensions. We use magnetic resonance imaging (MRI), a cylindrical penetrometer, and HPLC to demonstrate the importance of spatial homogeneity in the distribution of enzyme on the rates of liquefaction of the substrate and in the suspension mechanical strength. Our results show that the largest mechanical strength changes occur in a narrow interval of time during the initial stages of conversion. Differences in enzyme concentration distribution occurring at the centimeter-scale produced order of magnitude differences in liquefaction and saccharification rates, supporting the hypothesis that mixing quality has a major influence in both liquefaction and saccharification rates.


Subject(s)
Carbohydrate Metabolism , Cellulose/chemistry , Chromatography, High Pressure Liquid , Hydrolysis , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...