Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1840(12): 3367-73, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25196359

ABSTRACT

BACKGROUND: The mercaptoacrylate calpain inhibitor, PD150606, has been shown by X-ray crystallography to bind to a hydrophobic groove in the enzyme's penta-EF-hand domains far away from the catalytic cleft and has been previously described as an uncompetitive inhibitor of calpains. The penta-peptide LSEAL has been reported to be an inhibitor of calpain and was predicted to bind in the same hydrophobic groove. The X-ray crystal structure of calpain-2 bound to its endogenous calpain inhibitor, calpastatin, shows that calpastatin also binds to the hydrophobic grooves in the two penta-EF-hand domains, but its inhibitory domain binds to the protease core domains and blocks the active site cleft directly. METHODS: The mechanisms of inhibition by PD150606 and LSEAL were investigated using steady-state kinetics of cleavage of a fluorogenic substrate by calpain-2 and the protease core of calpain1, as well as by examining the inhibition of casein hydrolysis by calpain and the autoproteolysis of calpain. RESULTS: PD150606 inhibits both full-length calpain-2 and the protease core of calpain-1 with an apparent noncompetitive kinetic model. The penta-peptide LSEAL failed to inhibit either whole calpain or its protease core in vitro. CONCLUSIONS: PD150606 cannot inhibit cleavage by calpain-2 of small substrates via binding to the penta-EF-hand domain. GENERAL SIGNIFICANCE: PD150606 is often described as a calpain-specific inhibitor due to its ability to target the penta-EF-hand domains of calpain, but we show that it must be acting at a site on the protease core domain instead.

2.
FEBS J ; 280(22): 5919-32, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24024640

ABSTRACT

A Ca(2+) -dependent 1.5-MDa antifreeze protein present in an Antarctic Gram-negative bacterium, Marinomonas primoryensis (MpAFP), has recently been reassessed as an ice-binding adhesin. The non-ice-binding region II (RII), one of five distinct domains in MpAFP, constitutes ~ 90% of the protein. RII consists of ~ 120 tandem copies of an identical 104-residue sequence. We used the Protein Homology/analogy Recognition Engine server to define the boundaries of a single 104-residue RII construct (RII monomer). CD demonstrated that Ca(2+) is required for RII monomer folding, and that the monomer is fully structured at a Ca(2+) /protein molar ratio of 10 : 1. The crystal structure of the RII monomer was solved to a resolution of 1.35 Å by single-wavelength anomalous dispersion and molecular replacement methods with Ca(2+) as the heavy atom to obtain phase information. The RII monomer folds as a Ca(2+) -bound immunoglobulin-like ß-sandwich. Ca(2+) ions are coordinated at the interfaces between each RII monomer and its symmetry-related molecules, suggesting that these ions may be involved in the stabilization of the tandemly repeated RII. We hypothesize that > 600 Ca(2+) ions help to rigidify the chain of 104-residue repeats in order to project the ice-binding domain of MpAFP away from the bacterial cell surface. The proposed role of RII is to help the strictly aerobic bacterium bind surface ice in an Antarctic lake for better access to oxygen and nutrients. This work may give insights into other bacterial proteins that resemble MpAFP, especially those of the large repeats-in-toxin family that have been characterized as adhesins exported via the type I secretion pathway.


Subject(s)
Adhesins, Bacterial/chemistry , Antifreeze Proteins/chemistry , Bacterial Proteins/chemistry , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Amino Acid Sequence , Antarctic Regions , Antifreeze Proteins/genetics , Antifreeze Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Calcium/metabolism , Crystallography, X-Ray , Ice , Marinomonas/genetics , Marinomonas/metabolism , Models, Molecular , Molecular Sequence Data , Protein Folding , Protein Stability , Protein Structure, Tertiary , Structural Homology, Protein
3.
Mol Inform ; 30(10): 873-83, 2011 Oct.
Article in English | MEDLINE | ID: mdl-27468107

ABSTRACT

UDP-galactopyranose mutase (UGM) is a flavo-enzyme involved in the bacterial cell wall biosynthesis. UGM catalyzes the reversible isomerization of UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf). UDP-Galf is the activated precursor of galactofuranose (Galf) residues that are essential components of the cell wall of certain pathogenic bacteria such as Klebsiella pneumoniae and Mycobacterium tuberculosis. Neither UGM nor Galf residues are found in humans, making Galf biosynthesis a potential drug target for developing antibacterial agents. We report the identification of novel inhibitors of UGM by in silico docking of the LeadQuest compound database against UGM from Escherichia coli. The 13 most promising inhibitors were then evaluated against K. pneumonia and M. tuberculosis UGMs by enzyme inhibition studies. Two inhibitors were identified with IC50 values of ∼1 µM and subsequently these compounds were docked into the recently solved X-ray structure of Deinococcus radiodurans UGM. The structure-activity relationships of the initial 13 compounds evaluated as inhibitors are discussed.

4.
Article in English | MEDLINE | ID: mdl-19652355

ABSTRACT

UDP-galactopyranose mutase (UGM) catalyzes the interconversion of UDP-galactopyranose and UDP-galactofuranose. A UGM-substrate complex from Deinococccus radiodurans has been expressed, purified and crystallized. Crystals were obtained by the microbatch-under-oil method at room temperature. The crystals diffracted to 2.36 A resolution at the Canadian Light Source. The space group was found to be P2(1)2(1)2(1), with unit-cell parameters a = 134.0, b = 176.6, c = 221.6 A. The initial structure solution was determined by molecular replacement using UGM from Mycobacterium tuberculosis (PDB code 1v0j) as a template model.


Subject(s)
Deinococcus/enzymology , Intramolecular Transferases/chemistry , Base Sequence , Cloning, Molecular , Crystallography, X-Ray , DNA Primers , Intramolecular Transferases/genetics , Intramolecular Transferases/isolation & purification , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...