Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38405895

ABSTRACT

Beta-adrenergic receptors (ßARs) are G protein-coupled receptors (GPCRs) that mediate catecholamine-induced stress responses, such as heart rate increase and bronchodilation. In addition to signals from the cell surface, ßARs also broadcast non-canonical signaling activities from the cell interior membranes (endomembranes). Dysregulation of these receptor pathways underlies severe pathological conditions. Excessive ßAR stimulation is linked to cardiac hypertrophy, leading to heart failure, while impaired stimulation causes compromised fight or flight stress responses and homeostasis. In addition to plasma membrane ßAR, emerging evidence indicates potential pathological implications of deeper endomembrane ßARs, such as inducing cardiomyocyte hypertrophy and apoptosis, underlying heart failure. However, the lack of approaches to control their signaling in subcellular compartments exclusively has impeded linking endomembrane ßAR signaling with pathology. Informed by the ß1AR-catecholamine interactions, we engineered an efficiently photo-labile, protected hydroxy ß1AR pro-ligand (OptoIso) to trigger ßAR signaling at the cell surface, as well as exclusive endomembrane regions upon blue light stimulation. Not only does OptoIso undergo blue light deprotection in seconds, but it also efficiently enters cells and allows examination of G protein heterotrimer activation exclusively at endomembranes. In addition to its application in the optical interrogation of ßARs in unmodified cells, given its ability to control deep organelle ßAR signaling, OptoIso will be a valuable experimental tool.

2.
ACS Synth Biol ; 13(1): 242-258, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38092428

ABSTRACT

Cells experience time-varying and spatially heterogeneous chemokine signals in vivo, activating cell surface proteins including G protein-coupled receptors (GPCRs). The Gαq pathway activation by GPCRs is a major signaling axis with broad physiological and pathological significance. Compared with other Gα members, GαqGTP activates many crucial effectors, including PLCß (Phospholipase Cß) and Rho GEFs (Rho guanine nucleotide exchange factors). PLCß regulates many key processes, such as hematopoiesis, synaptogenesis, and cell cycle, and is therefore implicated in terminal-debilitating diseases, including cancer, epilepsy, Huntington's Disease, and Alzheimer's Disease. However, due to a lack of genetic and pharmacological tools, examining how the dynamic regulation of PLCß signaling controls cellular physiology has been difficult. Since activated PLCß induces several abrupt cellular changes, including cell morphology, examining how the other pathways downstream of Gq-GPCRs contribute to the overall signaling has also been difficult. Here we show the engineering, validation, and application of a highly selective and efficient optogenetic inhibitor (Opto-dHTH) to completely disrupt GαqGTP-PLCß interactions reversibly in user-defined cellular-subcellular regions on optical command. Using this newly gained PLCß signaling control, our data indicate that the molecular competition between RhoGEFs and PLCß for GαqGTP determines the potency of Gq-GPCR-governed directional cell migration.


Subject(s)
Signal Transduction , Phospholipase C beta/genetics , Phospholipase C beta/metabolism , Signal Transduction/physiology
3.
Chem Catal ; 3(11)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37982045

ABSTRACT

An outstanding challenge in the Pd-catalyzed functionalization of allylamines is the control of stereochemistry. Terminal alkenes preferentially undergo Heck-type reactions, while internal alkenes may undergo a mixture of Heck and C-H activation reactions that give mixtures of stereochemical products. In the case of unprotected allylamines, the challenge in achieving C-H activation is that facile in situ formation of Pd nanoparticles leads to preferential formation of trans rather than cis-substituted products. In this study we have demonstrated the feasibility of using mono-protected amino acid (MPAA) ligands as metal protecting groups to prevent aggregation and reduction, allowing the selective synthesis of free cis-arylated allylamines. This method complements Heck-selective methods, allowing complete stereochemical control over the synthesis of cinnamylamines, an important class of amine that can serve as therapeutics directly or as advanced intermediates. To highlight the utility of the methodology, we have demonstrated rapid access to mu opioid receptor ligands.

4.
J Biol Chem ; 299(11): 105269, 2023 11.
Article in English | MEDLINE | ID: mdl-37739036

ABSTRACT

Prenylation is an irreversible post-translational modification that supports membrane interactions of proteins involved in various cellular processes, including migration, proliferation, and survival. Dysregulation of prenylation contributes to multiple disorders, including cancers and vascular and neurodegenerative diseases. Prenyltransferases tether isoprenoid lipids to proteins via a thioether linkage during prenylation. Pharmacological inhibition of the lipid synthesis pathway by statins is a therapeutic approach to control hyperlipidemia. Building on our previous finding that statins inhibit membrane association of G protein γ (Gγ) in a subtype-dependent manner, we investigated the molecular reasoning for this differential inhibition. We examined the prenylation of carboxy-terminus (Ct) mutated Gγ in cells exposed to Fluvastatin and prenyl transferase inhibitors and monitored the subcellular localization of fluorescently tagged Gγ subunits and their mutants using live-cell confocal imaging. Reversible optogenetic unmasking-masking of Ct residues was used to probe their contribution to prenylation and membrane interactions of the prenylated proteins. Our findings suggest that specific Ct residues regulate membrane interactions of the Gγ polypeptide, statin sensitivity, and extent of prenylation. Our results also show a few hydrophobic and charged residues at the Ct are crucial determinants of a protein's prenylation ability, especially under suboptimal conditions. Given the cell and tissue-specific expression of different Gγ subtypes, our findings indicate a plausible mechanism allowing for statins to differentially perturb heterotrimeric G protein signaling in cells depending on their Gγ-subtype composition. Our results may also provide molecular reasoning for repurposing statins as Ras oncogene inhibitors and the failure of using prenyltransferase inhibitors in cancer treatment.


Subject(s)
Heterotrimeric GTP-Binding Proteins , Protein Prenylation , Humans , Amino Acid Motifs , Drug Resistance/genetics , HeLa Cells , Heterotrimeric GTP-Binding Proteins/chemistry , Heterotrimeric GTP-Binding Proteins/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Models, Molecular , Mutation , Protein Prenylation/drug effects , Protein Structure, Tertiary , Protein Transport/drug effects , Signal Transduction/drug effects
5.
bioRxiv ; 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37609229

ABSTRACT

Cells experience time-varying and spatially heterogeneous chemokine signals in vivo, activating cell surface proteins, including G protein-coupled receptors (GPCRs). The Gαq pathway activation by GPCRs is a major signaling axis with a broad physiological and pathological significance. Compared to other Gα members, GαqGTP activates many crucial effectors, including PLCß (Phospholipase Cß) and Rho GEFs (Rho guanine nucleotide exchange factors). PLCß regulates many key processes, such as hematopoiesis, synaptogenesis, and cell cycle, and is therefore implicated in terminal - debilitating diseases, including cancer, epilepsy, Huntington's Disease, and Alzheimer's Disease. However, due to a lack of genetic and pharmacological tools, examining how the dynamic regulation of PLCß signaling controls cellular physiology has been difficult. Since activated PLCß induces several abrupt cellular changes, including cell morphology, examining how the other pathways downstream of Gq-GPCRs contribute to the overall signaling has also been difficult. Here we show the engineering, validation, and application of a highly selective and efficient optogenetic inhibitor (Opto-dHTH) to completely disrupt GαqGTP-PLCß interactions reversibly in user-defined cellular-subcellular regions on optical command. Using this newly gained PLCß signaling control, our data indicate that the molecular competition between RhoGEFs and PLCß for GαqGTP determines the potency of Gq-GPCR-governed directional cell migration.

6.
bioRxiv ; 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37461501

ABSTRACT

Prenylation is a universal and irreversible post-translational modification that supports membrane interactions of proteins involved in various cellular processes, including migration, proliferation, and survival. Thus, dysregulation of prenylation contributes to multiple disorders, including cancers, vascular diseases, and neurodegenerative diseases. During prenylation, prenyltransferase enzymes tether metabolically produced isoprenoid lipids to proteins via a thioether linkage. Pharmacological inhibition of the lipid synthesis pathway by statins has long been a therapeutic approach to control hyperlipidemia. Building on our previous finding that statins inhibit membrane association of G protein γ (Gγ) in a subtype-dependent manner, we investigated the molecular reasoning for this differential. We examined the prenylation efficacy of carboxy terminus (Ct) mutated Gγ in cells exposed to Fluvastatin and prenyl transferase inhibitors and monitored the subcellular localization of fluorescently tagged Gγ subunits and their mutants using live-cell confocal imaging. Reversible optogenetic unmasking-masking of Ct residues was used to probe their contribution to the prenylation process and membrane interactions of the prenylated proteins. Our findings suggest that specific Ct residues regulate membrane interactions of the Gγ polypeptide statin sensitivity, and prenylation efficacy. Our results also show that a few hydrophobic and charged residues at the Ct are crucial determinants of a protein's prenylation ability, especially under suboptimal conditions. Given the cell and tissue-specific expression of different Gγ subtypes, our findings explain how and why statins differentially perturb heterotrimeric G protein signaling in specific cells and tissues. Our results may provide molecular reasoning for repurposing statins as Ras oncogene inhibitors and the failure of using prenyltransferase inhibitors in cancer treatment.

7.
Methods Enzymol ; 682: 17-52, 2023.
Article in English | MEDLINE | ID: mdl-36948701

ABSTRACT

Phospholipase C (PLC) enzymes convert the membrane phospholipid phosphatidylinositol-4,5-bisphosphate (PIP2) into inositol-1,4,5-triphosphate (IP3) and diacylglycerol (DAG). IP3 and DAG regulate numerous downstream pathways, eliciting diverse and profound cellular changes and physiological responses. In the six PLC subfamilies in higher eukaryotes, PLCß is intensively studied due to its prominent role in regulating crucial cellular events underlying many processes including cardiovascular and neuronal signaling, and associated pathological conditions. In addition to GαqGTP, Gßγ generated upon G protein heterotrimer dissociation also regulates PLCß activity. Here, we not only review how Gßγ directly activates PLCß, and also extensively modulates Gαq-mediated PLCß activity, but also provide a structure-function overview of PLC family members. Given that Gαq and PLCß are oncogenes, and Gßγ shows unique cell-tissue-organ specific expression profiles, Gγ subtype-dependent signaling efficacies, and distinct subcellular activities, this review proposes that Gßγ is a major regulator of Gαq-dependent and independent PLCß signaling.


Subject(s)
GTP-Binding Proteins , Signal Transduction , Phospholipase C beta/genetics , Phospholipase C beta/metabolism , GTP-Binding Proteins/metabolism , Phospholipids
8.
Sci Rep ; 13(1): 2771, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36797332

ABSTRACT

Phosphatidylinositol (3,4,5) trisphosphate (PIP3) is a plasma membrane-bound signaling phospholipid involved in many cellular signaling pathways that control crucial cellular processes and behaviors, including cytoskeleton remodeling, metabolism, chemotaxis, and apoptosis. Therefore, defective PIP3 signaling is implicated in various diseases, including cancer, diabetes, obesity, and cardiovascular diseases. Upon activation by G protein-coupled receptors (GPCRs) or receptor tyrosine kinases (RTKs), phosphoinositide-3-kinases (PI3Ks) phosphorylate phosphatidylinositol (4,5) bisphosphate (PIP2), generating PIP3. Though the mechanisms are unclear, PIP3 produced upon GPCR activation attenuates within minutes, indicating a tight temporal regulation. Our data show that subcellular redistributions of G proteins govern this PIP3 attenuation when GPCRs are activated globally, while localized GPCR activation induces sustained subcellular PIP3. Interestingly the observed PIP3 attenuation was Gγ subtype-dependent. Considering distinct cell-tissue-specific Gγ expression profiles, our findings not only demonstrate how the GPCR-induced PIP3 response is regulated depending on the GPCR activity gradient across a cell, but also show how diversely cells respond to spatial and temporal variability of external stimuli.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , Signal Transduction/physiology , Receptors, G-Protein-Coupled/metabolism , Cell Membrane/metabolism , GTP-Binding Proteins/metabolism , Phosphatidylinositols/metabolism
9.
J Biol Chem ; 298(12): 102618, 2022 12.
Article in English | MEDLINE | ID: mdl-36272647

ABSTRACT

Heterotrimeric G proteins (αßγ subunits) that are activated by G protein-coupled receptors (GPCRs) mediate the biological responses of eukaryotic cells to extracellular signals. The α subunits and the tightly bound ßγ subunit complex of G proteins have been extensively studied and shown to control the activity of effector molecules. In contrast, the potential roles of the large family of γ subunits have been less studied. In this review, we focus on present knowledge about these proteins. Induced loss of individual γ subunit types in animal and plant models result in strikingly distinct phenotypes indicating that γ subtypes play important and specific roles. Consistent with these findings, downregulation or upregulation of particular γ subunit types result in various types of cancers. Clues about the mechanistic basis of γ subunit function have emerged from imaging the dynamic behavior of G protein subunits in living cells. This shows that in the basal state, G proteins are not constrained to the plasma membrane but shuttle between membranes and on receptor activation ßγ complexes translocate reversibly to internal membranes. The translocation kinetics of ßγ complexes varies widely and is determined by the membrane affinity of the associated γ subtype. On translocating, some ßγ complexes act on effectors in internal membranes. The variation in translocation kinetics determines differential sensitivity and adaptation of cells to external signals. Membrane affinity of γ subunits is thus a parsimonious and elegant mechanism that controls information flow to internal cell membranes while modulating signaling responses.


Subject(s)
GTP-Binding Protein beta Subunits , GTP-Binding Protein gamma Subunits , Receptors, G-Protein-Coupled , Animals , Cell Membrane/metabolism , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/genetics , GTP-Binding Protein gamma Subunits/metabolism , Signal Transduction , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Humans
10.
Mol Biol Cell ; 32(16): 1446-1458, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34106735

ABSTRACT

G protein beta-gamma (Gßγ) subunits anchor to the plasma membrane (PM) through the carboxy-terminal (CT) prenyl group in Gγ. This interaction is crucial for the PM localization and functioning of Gßγ, allowing GPCR-G protein signaling to proceed. The diverse Gγ family has 12 members, and we have recently shown that the signaling efficacies of major Gßγ effectors are Gγ-type dependent. This dependency is due to the distinct series of membrane-interacting abilities of Gγ. However, the molecular process allowing for Gßγ subunits to exhibit a discrete and diverse range of Gγ-type-dependent membrane affinities is unclear and cannot be explained using only the type of prenylation. The present work explores the unique designs of membrane-interacting CT residues in Gγ as a major source for this Gγ-type-dependent Gßγ signaling. Despite the type of prenylation, the results show signaling efficacy at the PM, and associated cell behaviors of Gßγ are governed by crucially located specific amino acids in the five to six residue preprenylation region of Gγ. The provided molecular picture of Gγ-membrane interactions may explain how cells gain Gγ-type-dependent G protein-GPCR signaling as well as how Gßγ elicits selective signaling at various subcellular compartments.


Subject(s)
Cell Membrane/metabolism , GTP-Binding Protein gamma Subunits/metabolism , Protein Prenylation , Signal Transduction , GTP-Binding Protein beta Subunits/metabolism , HeLa Cells , Humans
11.
J Biol Chem ; 296: 100702, 2021.
Article in English | MEDLINE | ID: mdl-33901492

ABSTRACT

Phospholipase C ß (PLCß), which is activated by the Gq family of heterotrimeric G proteins, hydrolyzes the inner membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2), generating diacylglycerol and inositol 1,4,5-triphosphate (IP3). Because Gq and PLCß regulate many crucial cellular processes and have been identified as major disease drivers, activation and termination of PLCß signaling by the Gαq subunit have been extensively studied. Gq-coupled receptor activation induces intense and transient PIP2 hydrolysis, which subsequently recovers to a low-intensity steady-state equilibrium. However, the molecular underpinnings of this equilibrium remain unclear. Here, we explored the influence of signaling crosstalk between Gq and Gi/o pathways on PIP2 metabolism in living cells using single-cell and optogenetic approaches to spatially and temporally constrain signaling. Our data suggest that the Gßγ complex is a component of the highly efficient lipase GαqGTP-PLCß-Gßγ. We found that over time, Gßγ dissociates from this lipase complex, leaving the less-efficient GαqGTP-PLCß lipase complex and allowing the significant partial recovery of PIP2 levels. Our findings also indicate that the subtype of the Gγ subunit in Gßγ fine-tunes the lipase activity of Gq-PLCß, in which cells expressing Gγ with higher plasma membrane interaction show lower PIP2 recovery. Given that Gγ shows cell- and tissue-specific subtype expression, our findings suggest the existence of tissue-specific distinct Gq-PLCß signaling paradigms. Furthermore, these results also outline a molecular process that likely safeguards cells from excessive Gq signaling.


Subject(s)
GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phospholipase C beta/metabolism , Cell Membrane/metabolism , HeLa Cells , Humans , Hydrolysis , Models, Molecular , Phospholipase C beta/chemistry , Protein Binding , Protein Conformation , Signal Transduction
12.
Cell Signal ; 82: 109947, 2021 06.
Article in English | MEDLINE | ID: mdl-33582184

ABSTRACT

G protein-coupled receptors (GPCRs) transmit information to the cell interior by transducing external signals to heterotrimeric G protein subunits, Gα and Gßγ subunits, localized on the inner leaflet of the plasma membrane. Though the initial focus was mainly on Gα-mediated events, Gßγ subunits were later identified as major contributors to GPCR-G protein signalling. A broad functional array of Gßγ signalling has recently been attributed to Gß and Gγ subtype diversity, comprising 5 Gß and 12 Gγ subtypes, respectively. In addition to displaying selectivity towards each other to form the Gßγ dimer, numerous studies have identified preferences of distinct Gßγ combinations for specific GPCRs, Gα subtypes and effector molecules. Importantly, Gß and Gγ subtype-dependent regulation of downstream effectors, representing a diverse range of signalling pathways and physiological functions have been found. Here, we review the literature on the repercussions of Gß and Gγ subtype diversity on direct and indirect regulation of GPCR/G protein signalling events and their physiological outcomes. Our discussion additionally provides perspective in understanding the intricacies underlying molecular regulation of subtype-specific roles of Gßγ signalling and associated diseases.


Subject(s)
GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/metabolism , Animals , Humans
13.
Chem Res Toxicol ; 33(9): 2225-2246, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32614166

ABSTRACT

Microcystins are cyclic peptide toxins formed by cyanobacteria. These toxins are recognized for their association with algal blooms, posing a significant threat to ecosystems and drinking water quality. Due to the growing environmental concerns they raise, a comprehensive review on microcystins' genesis, toxicity, and analytical methods for their quantitative determination is outlined. Genes, including the mcyABC cluster, regulate microcystin biogenesis. Bioanalytical experiments have identified key environmental factors, such as temperature and nitrogen availability, that promote microcystin production. Microcystin toxicity is explored based on its modulatory effects on protein phosphatases 1 and 2A in specific tissues and organs. Additionally, biochemical mechanisms of chelation, transportation, resultant oxidative stress, and tumor promotion abilities of microcystins are also discussed. Various analytical methods to separate, detect, and quantify microcystins, including the quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, nuclear magnetic resonance spectroscopy, and chromatographic platforms-linked tandem mass spectrometry (LC-MS) for unequivocal structural identification, are also reviewed. Since control of microcystins in water is of great necessity, both water treatment and mechanisms of abiotic transformation and microbial degradation are also discussed.


Subject(s)
Microcystins , Animals , Chromatography, Liquid , Humans , Mass Spectrometry , Microcystins/analysis , Microcystins/toxicity
15.
Cell Signal ; 69: 109547, 2020 05.
Article in English | MEDLINE | ID: mdl-31982549

ABSTRACT

The chemical- and photo- toxicity of chromophore retinal on cells have long been debated. Although we recently showed that retinal and blue light exposure interrupt cellular signaling, a comprehensive study examining molecular underpinnings of this perturbation and its consequences to cellular fate is lacking. Here, we report molecular evidence for blue light excited-retinal induced oxidative damage of polyunsaturated lipid anchors in membrane-interacting signaling molecules and DNA damage in cells using live-cell imaging and in vitro experimentation. The incurred molecular damage irreversibly disrupted subcellular localization of these molecules, a crucial criterion for their signaling. We further show retinal accumulation in lipid-bilayers of cell membranes could enhance the lifetime of retinal in cells. Comparative response-signatures suggest that retinal triggers reactions upon photoexcitation similar to photodynamic therapy agents and generate reactive oxygen species in cells. Additionally, data also shows that exposing retinal-containing cells to sunlight induces substantial cytotoxicity. Collectively, our results explain a likely in vivo mechanism and reaction conditions under which bio-available retinal in physiological light conditions damages cells.


Subject(s)
Light/adverse effects , Retinaldehyde/toxicity , DNA Damage , HeLa Cells , Humans , Lipid Peroxidation , Oxidative Stress , Photochemical Processes , Reactive Oxygen Species/metabolism
16.
Anal Bioanal Chem ; 411(19): 4481-4508, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30927013

ABSTRACT

G protein-coupled receptors (GPCRs), G proteins, and their signaling associates are major signal transducers that control the majority of cellular signaling and regulate key biological functions including immune, neurological, cardiovascular, and metabolic processes. These pathways are targeted by over one-third of drugs on the market; however, the current understanding of their function is limited and primarily derived from cell-destructive approaches providing an ensemble of static, multi-cell information about the status and composition of molecules. Spatiotemporal behavior of molecules involved is crucial to understanding in vivo cell behaviors both in health and disease, and the advent of genetically encoded fluorescence proteins and small fluorophore-based biosensors has facilitated the mapping of dynamic signaling in cells with subcellular acuity. Since we and others have developed optogenetic methods to regulate GPCR-G protein signaling in single cells and subcellular regions using dedicated wavelengths, the desire to develop and adopt optogenetically amenable assays to measure signaling has motivated us to take a broader look at the available optical tools and approaches compatible with measuring single-cell and subcellular GPCR-G protein signaling. Here we review such key optical approaches enabling the examination of GPCR, G protein, secondary messenger, and downstream molecules such as kinase and lipid signaling in living cells. The methods reviewed employ both fluorescence and bioluminescence detection. We not only further elaborate the underlying principles of these sensors but also discuss the experimental criteria and limitations to be considered during their use in single-cell and subcellular signal mapping.


Subject(s)
GTP-Binding Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Single-Cell Analysis , Subcellular Fractions/metabolism , Fluorescence , Gene Expression/physiology , Humans , Protein Binding , Receptors, G-Protein-Coupled/physiology
17.
Cell Signal ; 58: 34-43, 2019 06.
Article in English | MEDLINE | ID: mdl-30849518

ABSTRACT

G protein αq-coupled receptors (Gq-GPCRs) primarily signal through GαqGTP mediated phospholipase Cß (PLCß) stimulation and the subsequent hydrolysis of phosphatidylinositol 4, 5 bisphosphate (PIP2). Though Gq-heterotrimer activation results in both GαqGTP and Gßγ, unlike Gi/o-receptors, it is unclear if Gq-coupled receptors employ Gßγ as a major signal transducer. Compared to Gi/o- and Gs-coupled receptors, we observed that most cell types exhibit a limited free Gßγ generation upon Gq-pathway and Gαq/11 heterotrimer activation. We show that cells transfected with Gαq or endogenously expressing more than average-levels of Gαq/11 compared to Gαs and Gαi exhibit a distinct signaling regime primarily characterized by recovery-resistant PIP2 hydrolysis. Interestingly, the elevated Gq-expression is also associated with enhanced free Gßγ generation and signaling. Furthermore, the gene GNAQ, which encodes for Gαq, has recently been identified as a cancer driver gene. We also show that GNAQ is overexpressed in tumor samples of patients with Kidney Chromophobe (KICH) and Kidney renal papillary (KIRP) cell carcinomas in a matched tumor-normal sample analysis, which demonstrates the clinical significance of Gαq expression. Overall, our data indicates that cells usually express low Gαq levels, likely safeguarding cells from excessive calcium as wells as from Gßγ signaling.


Subject(s)
GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Signal Transduction , Calcium/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Gene Expression , HeLa Cells , Humans , Hydrolysis , Phospholipase C beta/metabolism , Transfection
18.
Mol Pharmacol ; 95(4): 361-375, 2019 04.
Article in English | MEDLINE | ID: mdl-30765461

ABSTRACT

Guanine nucleotide-binding proteins (G proteins) facilitate the transduction of external signals to the cell interior, regulate most eukaryotic signaling, and thus have become crucial disease drivers. G proteins largely function at the inner leaflet of the plasma membrane (PM) using covalently attached lipid anchors. Both small monomeric and heterotrimeric G proteins are primarily prenylated, either with a 15-carbon farnesyl or a 20-carbon geranylgeranyl polyunsaturated lipid. The mevalonate [3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase] pathway synthesizes lipids for G-protein prenylation. It is also the source of the precursor lipids for many biomolecules, including cholesterol. Consequently, the rate-limiting enzymes of the mevalonate pathway are major targets for cholesterol-lowering medications and anticancer drug development. Although prenylated G protein γ (Gγ) is essential for G protein-coupled receptor (GPCR)-mediated signaling, how mevalonate pathway inhibitors, statins, influence subcellular distribution of Gßγ dimer and Gαßγ heterotrimer, as well as their signaling upon GPCR activation, is poorly understood. The present study shows that clinically used statins not only significantly disrupt PM localization of Gßγ but also perturb GPCR-G protein signaling and associated cell behaviors. The results also demonstrate that the efficiency of prenylation inhibition by statins is Gγ subtype-dependent and is more effective toward farnesylated Gγ types. Since Gγ is required for Gßγ signaling and shows a cell- and tissue-specific subtype distribution, the present study can help understand the mechanisms underlying clinical outcomes of statin use in patients. This work also reveals the potential of statins as clinically usable drugs to control selected GPCR-G protein signaling.


Subject(s)
GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/metabolism , GTP-Binding Proteins/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Receptors, G-Protein-Coupled/metabolism , Animals , Cell Line , Cell Membrane/drug effects , Cell Membrane/metabolism , Cholesterol/metabolism , HeLa Cells , Humans , Mevalonic Acid/pharmacology , Mice , Protein Prenylation/drug effects , RAW 264.7 Cells , Signal Transduction/drug effects
19.
ACS Chem Neurosci ; 9(12): 3094-3107, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30044088

ABSTRACT

Imaging cytosolic calcium in neurons is emerging as a new tool in neurological disease diagnosis, drug screening, and toxicity testing. Ca2+ oscillation signatures show a significant variation depending on GPCR targeting agonists. Quantification of Ca2+ spike trains in ligand induced Ca2+ oscillations remains challenging due to their inherent heterogeneity in primary culture. Moreover, there is no framework available for identification of optimal number of clusters and distance metric to cluster Ca2+ spike trains. Using quantitative confocal imaging and clustering analysis, we show the characterization of Ca2+ spiking in GPCR targeting drug-treated primary culture of hippocampal neurons. A systematic framework for selection of the clustering method instead of an intuition-based method was used to optimize the cluster number and distance metric. The results discern neurons with diverse Ca2+ response patterns, including higher amplitude fast spiking and lower spiking responses, and their relative percentage in a neuron population in absence and presence of GPCR-targeted drugs. The proposed framework was employed to show that the  clustering pattern of Ca2+ spiking can be controlled using GABAB and mGluR targeting drugs. This approach can be used for unbiased measurement of neural activity and identification of spiking population with varying amplitude and frequencies, providing a platform for high-content drug screening.


Subject(s)
Calcium/metabolism , Neurons/metabolism , Receptors, GABA-B/metabolism , Receptors, Metabotropic Glutamate/metabolism , Animals , Baclofen/pharmacology , GABA-B Receptor Agonists/pharmacology , HeLa Cells , Hippocampus/cytology , Humans , Methoxyhydroxyphenylglycol/analogs & derivatives , Methoxyhydroxyphenylglycol/pharmacology , Microscopy, Confocal/methods , Neurons/drug effects , Optical Imaging/methods , Primary Cell Culture , Rats , Receptors, Metabotropic Glutamate/agonists
20.
Sci Rep ; 8(1): 10207, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29976989

ABSTRACT

Photoreceptor chromophore, 11-cis retinal (11CR) and the photoproduct, all-trans retinal (ATR), are present in the retina at higher concentrations and interact with the visual cells. Non-visual cells in the body are also exposed to retinal that enters the circulation. Although the cornea and the lens of the eye are transparent to the blue light region where retinal can absorb and undergo excitation, the reported phototoxicity in the eye has been assigned to lipophilic non-degradable materials known as lipofuscins, which also includes retinal condensation products. The possibility of blue light excited retinal interacting with cells; intercepting signaling in the presence or absence of light has not been explored. Using live cell imaging and optogenetic signaling control, we uncovered that blue light-excited ATR and 11CR irreversibly change/distort plasma membrane (PM) bound phospholipid; phosphatidylinositol 4,5 bisphosphate (PIP2) and disrupt its function. This distortion in PIP2 was independent of visual or non-visual G-protein coupled receptor activation. The change in PIP2 was followed by an increase in the cytosolic calcium, excessive cell shape change, and cell death. Blue light alone or retinal alone did not perturb PIP2 or elicit cytosolic calcium increase. Our data also suggest that photoexcited retinal-induced PIP2 distortion and subsequent oxidative damage incur in the core of the PM. These findings suggest that retinal exerts light sensitivity to both photoreceptor and non-photoreceptor cells, and intercepts crucial signaling events, altering the cellular fate.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , Light/adverse effects , Phosphatidylinositol 4,5-Diphosphate/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Retina/metabolism , Retinaldehyde/metabolism , Animals , Cell Line , HCT116 Cells , HeLa Cells , Humans , Lipofuscin/metabolism , Mice , NIH 3T3 Cells , Optogenetics , Retina/drug effects , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...