Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 5(10): e13763, 2010 Oct 29.
Article in English | MEDLINE | ID: mdl-21048941

ABSTRACT

BACKGROUND: Macropinocytosis is an actin-driven endocytic process, whereby membrane ruffles fold back onto the plasma membrane to form large (>0.2 µm in diameter) endocytic organelles called macropinosomes. Relative to other endocytic pathways, little is known about the molecular mechanisms involved in macropinocytosis. Recently, members of the Sorting Nexin (SNX) family have been localized to the cell surface and early macropinosomes, and implicated in macropinosome formation. SNX-PX-BAR proteins form a subset of the SNX family and their lipid-binding (PX) and membrane-curvature sensing (BAR) domain architecture further implicates their functional involvement in macropinosome formation. METHODOLOGY/PRINCIPAL FINDINGS: We exploited the tractability of macropinosomes through image-based screening and systematic overexpression of SNX-PX-BAR proteins to quantitate their effect on macropinosome formation. SNX1 (40.9+/-3.19 macropinosomes), SNX5 (36.99+/-4.48 macropinosomes), SNX9 (37.55+/-2.4 macropinosomes), SNX18 (88.2+/-8 macropinosomes), SNX33 (65.25+/-6.95 macropinosomes) all exhibited statistically significant (p<0.05) increases in average macropinosome numbers per 100 transfected cells as compared to control cells (24.44+/-1.81 macropinosomes). SNX1, SNX5, SNX9, and SNX18 were also found to associate with early-stage macropinosomes within 5 minutes following organelle formation. The modulation of intracellular PI(3,4,5)P(3) levels through overexpression of PTEN or a lipid phosphatase-deficient mutant PTEN(G129E) was also observed to significantly reduce or elevate macropinosome formation respectively; coexpression of PTEN(G129E) with SNX9 or SNX18 synergistically elevated macropinosome formation to 119.4+/-7.13 and 91.4+/-6.37 macropinosomes respectively (p<0.05). CONCLUSIONS/SIGNIFICANCE: SNX1, SNX5, SNX9, SNX18, and SNX33 were all found to elevate macropinosome formation and (with the exception of SNX33) associate with early-stage macropinosomes. Moreover the effects of SNX9 and SNX18 overexpression in elevating macropinocytosis is likely to be synergistic with the increase in PI(3,4,5)P(3) levels, which is known to accumulate on the cell surface and early-stage macropinocytic cups. Together these findings represent the first systematic functional study into the impact of the SNX-PX-BAR family on macropinocytosis.


Subject(s)
Pinocytosis , Proteins/metabolism , Protein Transport
2.
Genome Biol ; 9(1): R15, 2008 Jan 23.
Article in English | MEDLINE | ID: mdl-18211718

ABSTRACT

BACKGROUND: The nucleus is a complex cellular organelle and accurately defining its protein content is essential before any systematic characterization can be considered. RESULTS: We report direct evidence for 2,568 mammalian proteins within the nuclear proteome: the nuclear subcellular localization of 1,529 proteins based on a high-throughput subcellular localization protocol of full-length proteins and an additional 1,039 proteins for which clear experimental evidence is documented in published literature. This is direct evidence that the nuclear proteome consists of at least 14% of the entire proteome. This dataset was used to evaluate computational approaches designed to identify additional nuclear proteins. CONCLUSION: This represents direct experimental evidence that the nuclear proteome consists of at least 14% of the entire proteome. This high-quality nuclear proteome dataset was used to evaluate computational approaches designed to identify additional nuclear proteins. Based on this analysis, researchers can determine the stringency and types of lines of evidence they consider to infer the size and complement of the nuclear proteome.


Subject(s)
Cell Nucleus/chemistry , Proteome , Animals , Computational Biology/methods , Humans , Nuclear Proteins
3.
Nucleic Acids Res ; 36(Database issue): D230-3, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17986452

ABSTRACT

LOCATE is a curated, web-accessible database that houses data describing the membrane organization and subcellular localization of mouse and human proteins. Over the past 2 years, the data in LOCATE have grown substantially. The database now contains high-quality localization data for 20% of the mouse proteome and general localization annotation for nearly 36% of the mouse proteome. The proteome annotated in LOCATE is from the RIKEN FANTOM Consortium Isoform Protein Sequence sets which contains 58 128 mouse and 64 637 human protein isoforms. Other additions include computational subcellular localization predictions, automated computational classification of experimental localization image data, prediction of protein sorting signals and third party submission of literature data. Collectively, this database provides localization proteome for individual subcellular compartments that will underpin future systematic investigations of these regions. It is available at http://locate.imb.uq.edu.au/


Subject(s)
Databases, Protein , Membrane Proteins/chemistry , Proteins/analysis , Amino Acid Motifs , Animals , Cell Compartmentation , Humans , Internet , Mice , Protein Structure, Tertiary , Proteomics
4.
J Invest Dermatol ; 119(4): 905-12, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12406337

ABSTRACT

Filaggrin is a keratin filament associated protein that is expressed in granular layer keratinocytes and derived by sequential proteolysis from a polyprotein precursor termed profilaggrin. Depending on the species, each profilaggrin molecule contains between 10 and 20 filaggrin subunits organized as tandem repeats with a calcium-binding domain at the N- terminal end. We now report the characterization of the complete mouse gene. The structural organization of the mouse gene is identical to the human profilaggrin gene and consists of three exons with a 4 kb intron within the 5' noncoding region and a 1.7 kb intron separating the sequences encoding the calcium-binding EF-hand motifs. A processed pseudogene was found embedded within the second intron. The third and largest exon encodes the second EF-hand, a basic domain (designated the B-domain) followed by 12 filaggrin repeats and a unique C-terminal tail domain. A polyclonal antibody raised against the conceptually translated sequence of the B-domain specifically stained keratohyalin granules and colocalized with a filaggrin antibody in granular layer cells. In upper granular layer cells, B-domain containing keratohyalin granules were in close apposition to the nucleus and, in some cells, appeared to be completely engulfed by the nucleus. In transition layer cells, B-domain staining was evident in the nucleus whereas filaggrin staining remained cytoplasmic. Nuclear staining of the B-domain was also observed in primary mouse keratinocytes induced to differentiate. This study has also revealed significant sequence homology between the mouse and human promoter sequences and in the calcium-binding domain but the remainder of the protein-coding region shows substantial divergence.


Subject(s)
Active Transport, Cell Nucleus , Cell Nucleus/metabolism , Epidermis/metabolism , Intermediate Filament Proteins/genetics , Protein Precursors/genetics , Amino Acid Sequence , Animals , Base Sequence , Cell Differentiation , Filaggrin Proteins , Fluorescent Antibody Technique , Genetic Structures , Humans , Intermediate Filament Proteins/analysis , Intermediate Filament Proteins/chemistry , Introns , Mice , Microscopy, Immunoelectron , Molecular Sequence Data , Protein Precursors/analysis , Protein Precursors/chemistry , Sequence Homology , Transcription, Genetic
5.
Exp Dermatol ; 11(2): 153-8, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11994142

ABSTRACT

The bacterial lacZ gene is commonly used as a reporter for the in vivo analysis of gene regulation in transgenic mice. However, several laboratories have reported poor detection of beta-galactosidase (the lacZ gene product) using histochemical techniques, particularly in skin. Here we report the difficulties we encountered in assessing lacZ expression in transgenic keratinocytes using classic X-gal histochemical protocols in tissues shown to express the transgene by mRNA in situ hybridization. We found that lacZ reporter gene expression could be reliably detected in frozen tissue sections by immunofluorescence analysis using a beta-galactosidase-specific antibody. Moreover, we were able to localize both transgene and endogenous gene products simultaneously using double-label immunofluorescence. Our results suggest that antibody detection of beta-galactosidase should be used to verify other assays of lacZ expression, particularly where low expression levels are suspected or patchy expression is observed.


Subject(s)
Gene Expression , Genes, Reporter/physiology , Keratinocytes/physiology , Lac Operon/physiology , Animals , Antibodies/immunology , Antibody Specificity , Fluorescent Antibody Technique , Histocytochemistry , Keratin-6 , Keratins/genetics , Mice , Mice, Transgenic , Staining and Labeling , Tongue/physiology , beta-Galactosidase/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...