Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(13): 16562-16570, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36972385

ABSTRACT

Regardless of the superiorities of Li1.3Al0.3Ti1.7(PO4)3 (LATP), such as stability against oxygen and moisture, high ionic conductivity, and low activation energy, its practical application in all-solid-state lithium metal batteries is still impeded by the formation of ionic-resistance interphase layers. Upon contact with Li metal, electron migration from Li to LATP causes the reduction of Ti4+ in LATP. As a result, an ionic-resistance layer will be formed at the interface between the two materials. Applying a buffer layer between them is a potential measure to mitigate this problem. In this study, we analyzed the potential role of LiCl to protect the LATP solid electrolyte through a first-principle study-based density functional theory (DFT) calculation. Density-of-states (DOS) analysis on the Li/LiCl heterostructure reveals the insulating roles of LiCl in preventing electron flow to LATP. The insulating properties begin at depths of 4.3 and 5.0 Å for Li (001)/LiCl (111) and Li (001)/LiCl (001) heterostructures, respectively. These results indicate that LiCl (111) is highly potential to be applied as a protecting layer on LATP to avoid the formation of ionic resistance interphase caused by electron transfer from the Li metal anode.

SELECTION OF CITATIONS
SEARCH DETAIL
...