Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 298(2): 101541, 2022 02.
Article in English | MEDLINE | ID: mdl-34958801

ABSTRACT

Contactins (CNTNs) are neural cell adhesion molecules that encode axon-target specificity during the patterning of the vertebrate visual and olfactory systems. Because CNTNs are tethered to the plasma membrane by a glycosylphosphatidylinositol anchor, they lack an intracellular region to communicate across the membrane. Instead, they form coreceptor complexes with distinct transmembrane proteins to transmit signals inside the cell. In particular, a complex of CNTN4 and amyloid precursor protein (APP) is known to guide the assembly of specific circuits in the visual system. Here, using in situ hybridization in zebrafish embryos, we show that CNTN4, CNTN5, and the APP homologs, amyloid beta precursor like protein 1 and amyloid beta precursor like protein 2, are expressed in olfactory pits, suggesting that these receptors may also function together in the organization of olfactory tissues. Furthermore, we use biochemical and structural approaches to characterize interactions between members of these two receptor families. In particular, APP and amyloid beta precursor like protein 1 interact with CNTN3-5, whereas amyloid beta precursor like protein 2 only binds to CNTN4 and CNTN5. Finally, structural analyses of five CNTN-amyloid pairs indicate that these proteins interact through a conserved interface involving the second fibronectin type III repeat of CNTNs and the copper-binding domain of amyloid proteins. Overall, this work sets the stage for analyzing CNTN-amyloid-mediated connectivity in vertebrate sensory circuits.


Subject(s)
Amyloid beta-Peptides , Amyloid beta-Protein Precursor , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/chemistry , Amyloid beta-Protein Precursor/metabolism , Animals , Axons/metabolism , Contactins/chemistry , Contactins/metabolism , Zebrafish
2.
J Biol Chem ; 291(41): 21335-21349, 2016 Oct 07.
Article in English | MEDLINE | ID: mdl-27539848

ABSTRACT

Protein-tyrosine phosphatase receptor type G (RPTPγ/PTPRG) interacts in vitro with contactin-3-6 (CNTN3-6), a group of glycophosphatidylinositol-anchored cell adhesion molecules involved in the wiring of the nervous system. In addition to PTPRG, CNTNs associate with multiple transmembrane proteins and signal inside the cell via cis-binding partners to alleviate the absence of an intracellular region. Here, we use comprehensive biochemical and structural analyses to demonstrate that PTPRG·CNTN3-6 complexes share similar binding affinities and a conserved arrangement. Furthermore, as a first step to identifying PTPRG·CNTN complexes in vivo, we found that PTPRG and CNTN3 associate in the outer segments of mouse rod photoreceptor cells. In particular, PTPRG and CNTN3 form cis-complexes at the surface of photoreceptors yet interact in trans when expressed on the surfaces of apposing cells. Further structural analyses suggest that all CNTN ectodomains adopt a bent conformation and might lie parallel to the cell surface to accommodate these cis and trans binding modes. Taken together, these studies identify a PTPRG·CNTN complex in vivo and provide novel insights into PTPRG- and CNTN-mediated signaling.


Subject(s)
Contactins , Multiprotein Complexes , Nerve Tissue Proteins , Nerve Tissue/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 5 , Signal Transduction/physiology , Animals , Contactins/chemistry , Contactins/genetics , Contactins/metabolism , Humans , Mice , Models, Biological , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 5/chemistry , Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...