Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 11(1)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33477907

ABSTRACT

There is a growing demand for rapid and sensitive detection approaches for pathogenic bacteria that can be applied by non-specialists in non-laboratory field settings. Here, the detection of the typical E. coli enzyme ß-glucuronidase using a chitosan-based sensing hydrogel-coated paper sensor and the detailed analysis of the reaction kinetics, as detected by a smartphone camera, is reported. The chromogenic reporter unit affords an intense blue color in a two-step reaction, which was analyzed using a modified Michaelis-Menten approach. This generalizable approach can be used to determine the limit of detection and comprises an invaluable tool to characterize the performance of lab-in-a-phone type approaches. For the particular system analyzed, the ratio of reaction rate and equilibrium constants of the enzyme-substrate complex are 0.3 and 0.9 pM-1h-1 for ß-glucuronidase in phosphate buffered saline and lysogeny broth, respectively. The minimal degree of substrate conversion for detection of the indigo pigment formed during the reaction is 0.15, while the minimal time required for detection in this particular system is ~2 h at an enzyme concentration of 100 nM. Therefore, this approach is applicable for quantitative lab-in-a-phone based point of care detection systems that are based on enzymatic substrate conversion via bacterial enzymes.


Subject(s)
Biosensing Techniques/instrumentation , Chitosan/chemistry , Escherichia coli/isolation & purification , Glucuronidase/analysis , Escherichia coli/enzymology , Escherichia coli Proteins/analysis , Hydrogels/chemistry , Kinetics , Lysogeny , Phosphates/chemistry , Point-of-Care Systems , Smartphone , Video Recording
2.
Biotechnol Prog ; 31(1): 277-88, 2015.
Article in English | MEDLINE | ID: mdl-25394993

ABSTRACT

Excessive proteolytic degradation of fibronectin (FN) has been implicated in impaired tissue repair in chronic wounds. We previously reported two strategies for stabilizing FN against proteolytic degradation; the first conjugated polyethylene glycol (PEG) through cysteine residues and the second conjugated PEG chains of varying molecular weight on lysine residues. PEGylation of FN via lysine residues resulted in increased resistance to proteolysis with increasing PEG size, but an overall decrease in biological activity, as characterized by cell and gelatin binding. Our latest method to stabilize FN against proteolysis masks functional regions in the protein during lysine PEGylation. FN is PEGylated while it is bound to gelatin Sepharose beads with 2, 5, and 10 kDa PEG precursors. This results in partially PEGylated FN that is more stable than native FN and whose proteolytic stability increases with PEG molecular weight. Unlike completely PEGylated FN, partially PEGylated FN has cell adhesion, gelatin binding, and matrix assembly responses that are comparable to native FN. This is new evidence of how PEGylation variables can be used to stabilize FN while retaining its activity. The conjugates developed herein can be used to dissect molecular mechanisms mediated by FN stability and functionality, and address the problem of FN degradation in chronic wounds.


Subject(s)
Cell Adhesion/physiology , Fibronectins/chemistry , Fibronectins/metabolism , Gelatin/chemistry , Gelatin/metabolism , Animals , Humans , Mice , Molecular Weight , NIH 3T3 Cells , Polyethylene Glycols/chemistry , Protein Stability
SELECTION OF CITATIONS
SEARCH DETAIL
...