Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Data Brief ; 19: 586-593, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29900358

ABSTRACT

Biological, hydrological and chemical data were acquired at monthly intervals from March 2006 to February 2007, at the Long-Term Ecological Research site C1 in the Gulf of Trieste, in the northernmost part of the Adriatic Sea. The biological dataset comprises total chl a and phaeopigment concentrations, and the distinction of the total phytoplankton biomass into three photoautotrophic community fractions, i.e. cyanobacteria, nano- and microphytoplankton, collected at discrete depths. Hydrological data encompass the thermohaline properties of the water column (temperature and salinity profiles from CTD casts). Chemical data consist of silicate and phosphate concentrations obtained from discrete seawater samples collected with Niskin bottles at four depths (0.5-5-10-15 m). Data presented here are related to the paper "Structural and functional response of phytoplankton to reduced river inputs and anomalous physical-chemical conditions in the Gulf of Trieste (northern Adriatic Sea) by Cibic et al. (2018) [1].

2.
Sci Total Environ ; 636: 838-853, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29727850

ABSTRACT

We studied the influence of anomalous meteorological and hydrological conditions that occurred in the Gulf of Trieste from March 2006 to February 2007 on phytoplankton structure and function. We computed monthly mean (or median) air temperature, total precipitation, wind speed, river discharge, seawater temperature, salinity, photosynthetic available radiation (PAR), cyanobacteria, nano- and microphytoplankton abundances during the study year and compared them to climatological (1999-2014 for PAR; 1999-2007 for nanophytoplankton; 1998-2015 for the other variables) mean/median data. We then related the cyanobacteria (0.2-2 µm), nano- (2-20 µm) and microphytoplankton (20-200 µm) of the study year to inorganic nutrient concentrations. Median river inputs in October and November were 9- and 15-fold lower, respectively, than the time series medians, with consequent high salinity from May to November (up to +1.26 compared to the climatological data). Monthly mean seawater temperatures were lower than the climatological values (-2.95 °C at the surface) from March to August 2006 and higher (+2.15 °C at the surface) from September to February 2007. Reductions in freshwater input and nutrient depletion were likely responsible for a decrease in microphytoplankton (median annual abundance over 60% lower than the climatologic median) and cyanobacteria (up to 47% lower than the climatology). Significant seasonal differences in cyanobacteria and microphytoplankton abundances (RANOSIM = 0.52; p < 0.05), as well as in seawater temperature and salinity (RANOSIM = 0.73; p < 0.05) between the study period and the climatology were highlighted. The late spring diatom bloom was not reflected in high photosynthetic rates whereas an unusually high primary production was estimated in November (7.11 ±â€¯1.01 µgC L-1 h-1), when a mucilage event occurred due to very stable atmospheric and oceanographic conditions. The typical seasonal succession of pelagic phototrophs (micro-, nanophytoplankton and cyanobacteria) was altered since an exceptional cyanobacteria bloom first developed in April, followed by a delayed diatom bloom in May.


Subject(s)
Environmental Monitoring , Phytoplankton/physiology , Cyanobacteria , Italy , Rivers/chemistry , Seasons , Seawater/chemistry
3.
Environ Sci Pollut Res Int ; 23(13): 12707-24, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26498814

ABSTRACT

The Mar Piccolo is a semi-enclosed basin subject to different natural and anthropogenic stressors. In order to better understand plankton dynamics and preferential carbon pathways within the planktonic trophic web, an integrated approach was adopted for the first time by examining all trophic levels (virioplankton, the heterotrophic and phototrophic fractions of pico-, nano- and microplankton, as well as mesozooplankton). Plankton abundance and biomass were investigated during four surveys in the period 2013-2014. Beside unveiling the dynamics of different plankton groups in the Mar Piccolo, the study revealed that high portion of the plankton carbon (C) pool was constituted by small-sized (<2 µm) planktonic fractions. The prevalence of small-sized species within micro- and mesozooplankton communities was observed as well. The succession of planktonic communities was clearly driven by the seasonality, i.e. by the nutrient availability and physical features of the water column. Our hypothesis is that beside the 'bottom-up' control and the grazing pressure, inferred from the C pools of different plankton groups, the presence of mussel farms in the Mar Piccolo exerts a profound impact on plankton communities, not only due to the important sequestration of the plankton biomass but also by strongly influencing its structure.


Subject(s)
Bivalvia/physiology , Food Chain , Plankton/physiology , Water Quality , Animals , Aquaculture , Aquatic Organisms/physiology , Feeding Behavior , Italy , Plankton/classification , Population Dynamics
4.
Environ Sci Pollut Res Int ; 23(13): 12739-54, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26162444

ABSTRACT

Knowledge on ecosystem functioning can largely contribute to promote ecosystem-based management and its application. The Mar Piccolo of Taranto is a densely populated area at a high risk of environmental crisis. Here, planktonic primary production (PP) and heterotrophic prokaryotic production (HPP) were measured as proxies of functioning in three sampling sites located in two inlets at different levels of industrial contamination, during three sampling surveys (June 2013, February and April 2014). To have a better overall view and provide some insights into the benthic-pelagic coupling, we integrated PP and HPP in the water column with those in the sediments and then discussed this with the origin of the organic matter pools based on analysis of stable isotopes. Heavy metals and polychlorobiphenyls (PCBs) were also analysed in the surface (1 cm) sediment layer and related to the overall ecosystem functioning. Multidimensional scaling (MDS) analysis, based on the main data, clearly separated the second inlet from the first one, more severely impacted by anthropogenic activities. The stable isotope mixing model suggested the prevalent terrestrial/riverine origin of the particulate organic matter pools (mean 45.5 %) in all sampling periods, whereas phytoplankton contributed up to 29 % in February. Planktonic PP and HPP rates followed the same pattern over the entire study period and seemed to respond to phytoplankton dynamics confirming this community as the main driver for the C cycling in the water column. On the contrary, benthic PP rates were almost negligible while HPP rates were lower or comparable to those in the water column indicating that although the Mar Piccolo is very shallow, the water column is much more productive than the surface sediments. The sediment resuspension is likely responsible for a pulsed input of contaminants into the water column. However, their interference with the proper functioning of the pelagic ecosystem seems to be limited to the bottom layers.


Subject(s)
Carbon/analysis , Ecosystem , Organic Chemicals/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Italy
5.
Environ Sci Pollut Res Int ; 22(11): 8763-72, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25877905

ABSTRACT

The future growing demand of fossil fuels likely will lead to an increased deployment of liquefied natural gas terminals. However, some concerns exist about their possible effects on the marine environment and biota. Such plants showed to cause the production of foam, as occurred at the still operative terminal of Porto Viro (northern Adriatic Sea). Here, we present results from two microcosm experiments focused on the effects of such foam on microbially mediated degradation processes and its consequent incorporation within the pelagic food web. Such material could be considered as a heterogeneous matrix of both living and non-living organic matter, which constitutes an important substrate for exoenzymes as suggested by the faster hydrolytic rates measured in the treatment microcosms. In the second experiment, a quite immediate and efficient carbon transfer to planktonic biomass through prokaryotic incorporation and consequent predation by heterotrophic flagellates was highlighted. Although no negative effect was evidenced on the overall microbes' growth and foam-derived C seemed to be easily reworked and transferred to higher trophic levels, an important reduction in biodiversity was evidenced for microalgae. Among them, mixotrophic organisms seemed to be favoured suggesting that the addition of foam could cause a modification of the microbial community structure.


Subject(s)
Natural Gas , Plankton/growth & development , Biodiversity , Biomass , Food Chain
SELECTION OF CITATIONS
SEARCH DETAIL
...