Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
AAPS PharmSciTech ; 20(8): 308, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31520165

ABSTRACT

Quantitative structure-property relationship (QSPR) approach has been widely used in predicting physicochemical properties of compounds. However, its application in the estimation of formulation properties based on the polymer used in it to achieve desired formulation characteristics is an extremely challenging process. In the present research, predictive QSPR models were developed by correlating the physicochemical properties of varying grades of cellulose ethers (hydroxypropyl methylcellulose, HPMC) with those of nateglinide (NTG) containing tablets (in vitro and in vivo properties). Sustained release tablets of NTG were prepared by using different grades and concentrations of HPMC and subsequently characterized for in vitro as well as in vivo parameters. Further, QSPR models for individual formulation property were developed by correlating the polymeric physicochemical properties with the formulation characteristics. Subsequently, a true external validation method was used to validate the predictability of developed models. The dissolution study indicated Korsmeyer-Peppas as the best fit model following non-Fickian as drug transport mechanism extending the drug release up to 12 h. In vivo studies showed limited absorption of the NTG. Developed QSPR models showed promising validated predictability for formulation characteristics. The applicability of present work in formulation development could significantly reduce the time and cost expenditure on design trials without actually formulating a delivery system.


Subject(s)
Excipients/chemistry , Hypromellose Derivatives/chemistry , Animals , Computer Simulation , Delayed-Action Preparations , Drug Compounding , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacokinetics , Models, Chemical , Nateglinide/administration & dosage , Nateglinide/chemistry , Nateglinide/pharmacokinetics , Polymerization , Quantitative Structure-Activity Relationship , Rabbits , Reproducibility of Results , Tablets
2.
AAPS PharmSciTech ; 20(7): 268, 2019 Jul 26.
Article in English | MEDLINE | ID: mdl-31350676

ABSTRACT

Chemoinformatics is emerging as a new trend to set drug discovery which correlates the relationship between structure and biological functions. The main aim of chemoinformatics refers to analyzing the similarity among molecules, searching the molecules in the structural database, finding potential drug molecule and their property. One of the key fields in chemoinformatics is quantitative structure-property relationship (QSPR), which is an alternative process to predict the various physicochemical and biopharmaceutical properties. This methodology expresses molecules via various numerical values or properties (descriptors), which encodes the structural characteristics of molecules and further used to calculate physicochemical properties of the molecule. The established QSPR model could be used to predict the properties of compounds that have been measured or even have been unknown, which ultimately accelerates the development process of a new molecule or the product. The formulation characteristics (drug release, transportability, bioavailability) can be predicted with the integration of QSPR approach. Therefore, QSPR modeling is an emerging trend to skip conventional drug as well as formulation development process. The current review highlights the overall process involved in the application of the QSPR approach in formulation development.


Subject(s)
Drug Compounding , Drug Discovery , Drug Liberation , Quantitative Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...