Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 47, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36599824

ABSTRACT

Obesity increases asthma prevalence and severity. However, the underlying mechanisms are poorly understood, and consequently, therapeutic options for asthma patients with obesity remain limited. Here we report that cholecystokinin-a metabolic hormone best known for its role in signaling satiation and fat metabolism-is increased in the lungs of obese mice and that pharmacological blockade of cholecystokinin A receptor signaling reduces obesity-associated airway hyperresponsiveness. Activation of cholecystokinin A receptor by the hormone induces contraction of airway smooth muscle cells. In vivo, cholecystokinin level is elevated in the lungs of both genetically and diet-induced obese mice. Importantly, intranasal administration of cholecystokinin A receptor antagonists (proglumide and devazepide) suppresses the airway hyperresponsiveness in the obese mice. Together, our results reveal an unexpected role for cholecystokinin in the lung and support the repurposing of cholecystokinin A receptor antagonists as a potential therapy for asthma patients with obesity.


Subject(s)
Asthma , Respiratory Hypersensitivity , Animals , Mice , Asthma/drug therapy , Asthma/metabolism , Cholecystokinin/metabolism , Lung/metabolism , Mice, Obese , Obesity/complications , Obesity/metabolism , Receptor, Cholecystokinin A/genetics , Receptor, Cholecystokinin A/metabolism , Respiratory Hypersensitivity/drug therapy , Respiratory Hypersensitivity/metabolism
2.
Physiol Rep ; 8(19): e14584, 2020 10.
Article in English | MEDLINE | ID: mdl-33052618

ABSTRACT

In mice, both androgens and the gut microbiota modify pulmonary responses to ozone. We hypothesized that androgens affect gut microbiota and thereby impact pulmonary responses to ozone. To address this hypothesis, we transferred cecal microbiota from male castrated or sham castrated C57BL/6J mice into female germ-free recipient C57BL/6J mice. Four weeks later mice were exposed to ozone (2 ppm) or room air for 3 hr. The gut microbiomes of castrated versus sham castrated donors differed, as did those of recipients of microbiota from castrated versus sham castrated donors. In recipients, ozone-induced airway hyperresponsiveness was not affected by donor castration status. However, compared to mice receiving microbiota from sham castrated donors, mice receiving microbiota from castrated donors had elevated numbers of bronchoalveolar lavage (BAL) neutrophils despite evidence of reduced lung injury as measured by BAL protein. Serum concentrations of IL-17A and G-CSF were significantly greater in recipients of castrated versus sham castrated microbiota. Furthermore, BAL neutrophils correlated with both serum IL-17A and serum G-CSF. Our data indicate that androgen-mediated effects on the gut microbiota modulate pulmonary inflammatory responses to ozone and suggest a role for circulating IL-17A and G-CSF in these events.


Subject(s)
Androgens/pharmacology , Bronchoalveolar Lavage Fluid/microbiology , Gastrointestinal Microbiome/drug effects , Ozone/adverse effects , Animals , Interleukin-17/metabolism , Lung/drug effects , Lung/metabolism , Mice, Inbred C57BL , Neutrophils/drug effects , Neutrophils/metabolism , Respiratory Hypersensitivity/physiopathology
3.
Respir Res ; 21(1): 98, 2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32326950

ABSTRACT

BACKGROUND: Obesity augments pulmonary responses to ozone. We have reported that IL-33 contributes to these effects of obesity in db/db mice. The purpose of this study was to determine whether IL-33 also contributes to obesity-related changes in the response to ozone in mice with diet-induced obesity. METHODS: Male wildtype C57BL/6 mice and mice deficient in ST2, the IL-33 receptor, were placed on chow or high fat diets for 12 weeks from weaning. Because the microbiome has been implicated in obesity-related changes in the pulmonary response to ozone, mice were either housed with other mice of the same genotype (same housed) or with mice of the opposite genotype (cohoused). Cohousing transfers the gut microbiome from one mouse to its cagemates. RESULTS: Diet-induced increases in body mass were not affected by ST2 deficiency or cohousing. In same housed mice, ST2 deficiency reduced ozone-induced airway hyperresponsiveness and neutrophil recruitment in chow-fed but not HFD-fed mice even though ST2 deficiency reduced bronchoalveolar lavage IL-5 in both diet groups. In chow-fed mice, cohousing abolished ST2-related reductions in ozone-induced airway hyperresponsiveness and neutrophil recruitment, but in HFD-fed mice, no effect of cohousing on these responses to ozone was observed. In chow-fed mice, ST2 deficiency and cohousing caused changes in the gut microbiome. High fat diet-feeding caused marked changes in the gut microbiome and overrode both ST2-related and cohousing-related differences in the gut microbiome observed in chow-fed mice. CONCLUSION: Our data indicate a role for IL-33 in pulmonary responses to ozone in chow-fed but not high fat diet-fed mice and are consistent with the hypothesis that these diet-related differences in the role of IL-33 are the result of changes in the gut microbiome.


Subject(s)
Diet, High-Fat/adverse effects , Interleukin-1 Receptor-Like 1 Protein/deficiency , Interleukin-33/metabolism , Lung/metabolism , Obesity/metabolism , Ozone/toxicity , Animals , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Lung/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/etiology
4.
Physiol Rep ; 8(2): e14290, 2020 01.
Article in English | MEDLINE | ID: mdl-31981310

ABSTRACT

Early life changes in the microbiome contribute to the development of allergic asthma, but little is known about the importance of the microbiome for other forms of asthma. Ozone is a nonatopic asthma trigger that causes airway hyperresponsiveness and neutrophil recruitment to the lungs. The purpose of this study was to test the hypothesis that early life perturbations in the gut microbiome influence subsequent responses to ozone. To that end, we placed weanling mouse pups from The Jackson Laboratories or from Taconic Farms in sex-specific cages either with other mice from the same vendor (same-housed) or with mice from the opposite vendor (cohoused). Mice were maintained with these cagemates until use. The gut microbial community differs in mice from Jackson Labs and Taconic Farms, and cohousing mice transfers fecal microbiota from one mouse to another. Indeed, 16S rRNA sequencing of fecal DNA indicated that differences in the gut microbiomes of Jackson and Taconic same-housed mice were largely abolished when the mice were cohoused. At 10-12 weeks of age, mice were exposed to room air or ozone (2 ppm for 3 hr). Compared to same-housed mice, cohoused male but not female mice had reduced ozone-induced airway hyperresponsiveness and reduced ozone-induced increases in bronchoalveolar lavage neutrophils. Ozone-induced airway hyperresponsiveness was greater in male than in female mice and the sex difference was largely abolished in cohoused mice. The data indicate a role for early life microbial perturbations in pulmonary responses to a nonallergic asthma trigger.


Subject(s)
Asthma/microbiology , Gastrointestinal Microbiome , Ozone/toxicity , Animals , Asthma/etiology , Asthma/immunology , Female , Lung/drug effects , Lung/immunology , Male , Mice , Mice, Inbred C57BL , Neutrophils/immunology , Ozone/immunology , Sex Factors
5.
Am J Respir Cell Mol Biol ; 62(4): 503-512, 2020 04.
Article in English | MEDLINE | ID: mdl-31913653

ABSTRACT

Ozone causes airway hyperresponsiveness, a defining feature of asthma. We have reported that the gut microbiome contributes to sex differences in ozone-induced airway hyperresponsiveness. Altering dietary fiber affects the gut microbiome. The purpose of this study was to determine the effects of dietary fiber on pulmonary responses to ozone and whether these effects differ by sex. We fed male and female mice fiber-free diets or diets enriched in one of two types of dietary fiber, cellulose and pectin, for 3 days before ozone exposure. Compared with control diets or pectin-enriched diets, cellulose-enriched diets attenuated ozone-induced airway hyperresponsiveness in male but not female mice. In contrast, fiber-free diets augmented responses to ozone in female but not male mice. Analysis of 16S rRNA sequencing of fecal DNA also indicated sex differences in the impact of dietary fiber on the gut microbiome and identified bacterial taxa that were associated with ozone-induced airway hyperresponsiveness. Our data suggest that microbiome-based therapies such as prebiotics may provide an alternative therapeutic strategy for air pollution-triggered asthma, but they indicate that such therapeutics may need to be tailored differently for males and females.


Subject(s)
Dietary Fiber/metabolism , Lung/drug effects , Ozone/pharmacology , Animals , Asthma/metabolism , Diet/methods , Female , Gastrointestinal Microbiome/drug effects , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , RNA, Ribosomal, 16S/metabolism , Respiratory Hypersensitivity/metabolism , Sex Characteristics
6.
Physiol Rep ; 7(18): e14214, 2019 09.
Article in English | MEDLINE | ID: mdl-31544355

ABSTRACT

Ozone causes airway hyperresponsiveness, a defining feature of asthma, and is an asthma trigger. In mice, ozone-induced airway hyperresponsiveness is greater in males than in females, suggesting a role for sex hormones in the response to ozone. To examine the role of androgens in these sex differences, we castrated 4-week-old mice. Controls underwent sham surgery. At 8 weeks of age, mice were exposed to ozone (2ppm, 3 h) or room air. Twenty-four hours later, mice were anesthetized and measurements of airway responsiveness to inhaled aerosolized methacholine were made. Mice were then euthanized and bronchoalveolar lavage was performed. Castration attenuated ozone-induced airway hyperresponsiveness and reduced bronchoalveolar lavage cells. In intact males, flutamide, an androgen receptor inhibitor, had similar effects to castration. Bronchoalveolar lavage concentrations of several cytokines were reduced by either castration or flutamide treatment, but only IL-1α was reduced by both castration and flutamide. Furthermore, an anti-IL-1α antibody reduced bronchoalveolar lavage neutrophils in intact males, although it did not alter ozone-induced airway hyperresponsiveness. Our data indicate that androgens augment pulmonary responses to ozone and that IL-1α may contribute to the effects of androgens on ozone-induced cellular inflammation but not airway hyperresponsiveness.


Subject(s)
Androgens/physiology , Lung/drug effects , Ozone/toxicity , Respiratory Hypersensitivity/chemically induced , Androgen Antagonists/therapeutic use , Androgens/deficiency , Animals , Bronchoalveolar Lavage Fluid/chemistry , Corticosterone/blood , Cytokines/metabolism , Flutamide/therapeutic use , Interleukin-1alpha/metabolism , Interleukin-6/blood , Male , Methacholine Chloride , Mice, Inbred C57BL , Neutrophil Infiltration/drug effects , Neutrophil Infiltration/physiology , Orchiectomy , Oxidative Stress/physiology , Pneumonia/chemically induced , Pneumonia/physiopathology , Pneumonia/prevention & control , Respiratory Hypersensitivity/physiopathology , Respiratory Hypersensitivity/prevention & control , Respiratory Mechanics/drug effects , Sex Characteristics
7.
Respir Res ; 20(1): 197, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31455422

ABSTRACT

BACKGROUND: Interleukin-33 is released in the airways following acute ozone exposure and has the ability to cause airway hyperresponsiveness, a defining feature of asthma. Ozone causes greater airway hyperresponsiveness in male than female mice. Moreover, sex differences in the gut microbiome account for sex differences in this response to ozone. The purpose of this study was to determine whether there were sex differences in the role of interleukin-33 in ozone-induced airway hyperresponsiveness and to examine the role of the microbiome in these events. METHODS: Wildtype mice and mice genetically deficient in ST2, the interleukin-33 receptor, were housed from weaning with either other mice of the same genotype and sex, or with mice of the same sex but opposite genotype. At 15 weeks of age, fecal pellets were harvested for 16S rRNA sequencing and the mice were then exposed to air or ozone. Airway responsiveness was measured and a bronchoalveolar lavage was performed 24 h after exposure. RESULTS: In same-housed mice, ozone-induced airway hyperresponsiveness was greater in male than female wildtype mice. ST2 deficiency reduced ozone-induced airway hyperresponsiveness in male but not female mice and abolished sex differences in the response to ozone. However, sex differences in the role of interleukin-33 were unrelated to type 2 cytokine release: ozone-induced increases in bronchoalveolar lavage interleukin-5 were greater in females than males and ST2 deficiency virtually abolished interleukin-5 in both sexes. Since gut microbiota contribute to sex differences in ozone-induced airway hyperresponsiveness, we examined the role of the microbiome in these ST2-dependent sex differences. To do so, we cohoused wildtype and ST2 deficient mice, a situation that allows for transfer of microbiota among cage-mates. Cohousing altered the gut microbial community structure, as indicated by 16S rRNA gene sequencing of fecal DNA and reversed the effect of ST2 deficiency on pulmonary responses to ozone in male mice. CONCLUSIONS: The data indicate that the interleukin-33 /ST2 pathway contributes to ozone-induced airway hyperresponsiveness in male mice and suggest that the role of interleukin-33 is mediated at the level of the gut microbiome.


Subject(s)
Interleukin-1 Receptor-Like 1 Protein/deficiency , Interleukin-33/metabolism , Microbiota/drug effects , Ozone/toxicity , Respiratory Hypersensitivity/chemically induced , Respiratory Hypersensitivity/metabolism , Animals , Female , Inhalation Exposure/adverse effects , Lung/drug effects , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microbiota/physiology , Ozone/administration & dosage
9.
Am J Respir Cell Mol Biol ; 61(6): 702-712, 2019 12.
Article in English | MEDLINE | ID: mdl-31144984

ABSTRACT

Obesity is a risk factor for asthma, especially nonatopic asthma, and attenuates the efficacy of standard asthma therapeutics. Obesity also augments pulmonary responses to ozone, a nonatopic asthma trigger. The purpose of this study was to determine whether obesity-related alterations in gut microbiota contribute to these augmented responses to ozone. Ozone-induced increases in airway responsiveness, a canonical feature of asthma, were greater in obese db/db mice than in lean wild-type control mice. Depletion of gut microbiota with a cocktail of antibiotics attenuated obesity-related increases in the response to ozone, indicating a role for microbiota. Moreover, ozone-induced airway hyperresponsiveness was greater in germ-free mice that had been reconstituted with colonic contents of db/db than in wild-type mice. In addition, compared with dietary supplementation with the nonfermentable fiber cellulose, dietary supplementation with the fermentable fiber pectin attenuated obesity-related increases in the pulmonary response to ozone, likely by reducing ozone-induced release of IL-17A. Our data indicate a role for microbiota in obesity-related increases in the response to an asthma trigger and suggest that microbiome-based therapies such as prebiotics may provide an alternative therapeutic strategy for obese patients with asthma.


Subject(s)
Gastrointestinal Microbiome/physiology , Obesity/complications , Ozone/toxicity , Respiratory Hypersensitivity/etiology , Airway Resistance , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Asthma/etiology , Asthma/therapy , Cellulose/administration & dosage , Dietary Fiber/administration & dosage , Fecal Microbiota Transplantation , Female , Fermentation , Gastrointestinal Microbiome/drug effects , Germ-Free Life , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/genetics , Obesity/microbiology , Obesity/physiopathology , Pectins/administration & dosage , Pectins/therapeutic use , Receptors, Leptin/deficiency , Respiratory Hypersensitivity/chemically induced , Respiratory Hypersensitivity/diet therapy , Respiratory Hypersensitivity/microbiology
10.
Am J Respir Cell Mol Biol ; 60(2): 198-208, 2019 02.
Article in English | MEDLINE | ID: mdl-30240285

ABSTRACT

We have previously reported that the mouse gut microbiome contributes to pulmonary responses to ozone, a common asthma trigger, and that short-chain fatty acids, end products of bacterial fermentation, likely contribute to this role of the microbiome. A growing body of evidence indicates that there are sex-related differences in gut microbiota and these differences can have important functional consequences. The purpose of this study was to determine whether there are sex-related differences in the impact of the gut microbiota on pulmonary responses to ozone. After acute exposure to ozone, male mice developed greater airway hyperresponsiveness than female mice. This difference was abolished after antibiotic ablation of the gut microbiome. Moreover, weanling female pups housed in cages conditioned by adult male mice developed greater ozone-induced airway hyperresponsiveness than weanling female pups raised in cages conditioned by adult females. Finally, ad libitum oral administration via drinking water of the short-chain fatty acid propionate resulted in augmented ozone-induced airway hyperresponsiveness in male, but not female, mice. Overall, these data are consistent with the hypothesis that the microbiome contributes to sex differences in ozone-induced airway hyperresponsiveness, likely as a result of sex differences in the response to short-chain fatty acids.


Subject(s)
Lung/drug effects , Microbiota/drug effects , Microbiota/physiology , Ozone/adverse effects , Respiratory Hypersensitivity/microbiology , Animals , Anti-Bacterial Agents/pharmacology , Bronchoalveolar Lavage Fluid/microbiology , Fatty Acids, Volatile/metabolism , Female , Lung/metabolism , Male , Mice, Inbred C57BL , Propionates/pharmacology , Respiratory Hypersensitivity/chemically induced , Respiratory Hypersensitivity/drug therapy , Sex Factors
11.
Am J Respir Cell Mol Biol ; 59(3): 346-354, 2018 09.
Article in English | MEDLINE | ID: mdl-29529379

ABSTRACT

Previous reports demonstrate that the microbiome impacts allergic airway responses, including airway hyperresponsiveness, a characteristic feature of asthma. Here we examined the role of the microbiome in pulmonary responses to a nonallergic asthma trigger, ozone. We depleted the microbiota of conventional mice with either a single antibiotic (ampicillin, metronidazole, neomycin, or vancomycin) or a cocktail of all four antibiotics given via the drinking water. Mice were then exposed to room air or ozone. In air-exposed mice, airway responsiveness did not differ between antibiotic- and control water-treated mice. Ozone caused airway hyperresponsiveness, the magnitude of which was decreased in antibiotic cocktail-treated mice versus water-treated mice. Except for neomycin, single antibiotics had effects similar to those observed with the cocktail. Compared with conventional mice, germ-free mice also had attenuated airway responsiveness after ozone. 16S ribosomal RNA gene sequencing of fecal DNA to characterize the gut microbiome indicated that bacterial genera that were decreased in mice with reduced ozone-induced airway hyperresponsiveness after antibiotic treatment were short-chain fatty acid producers. Serum analysis indicated reduced concentrations of the short-chain fatty acid propionate in cocktail-treated mice but not in neomycin-treated mice. Dietary enrichment with pectin, which increased serum short-chain fatty acids, also augmented ozone-induced airway hyperresponsiveness. Furthermore, propionate supplementation of the drinking water augmented ozone-induced airway hyperresponsiveness in conventional mice. Our data indicate that the microbiome contributes to ozone-induced airway hyperresponsiveness, likely via its ability to produce short-chain fatty acids.


Subject(s)
Anti-Bacterial Agents/pharmacology , Microbiota/drug effects , Neutrophils/drug effects , Ozone/adverse effects , Animals , Bronchoalveolar Lavage Fluid/cytology , Mice , Microbiota/physiology , Respiratory Hypersensitivity/chemically induced , Respiratory Hypersensitivity/drug therapy , Tumor Necrosis Factor-alpha/antagonists & inhibitors
12.
Am J Respir Cell Mol Biol ; 58(3): 341-351, 2018 03.
Article in English | MEDLINE | ID: mdl-28957638

ABSTRACT

Ozone and obesity both increase IL-17A in the lungs. In mice, obesity augments the airway hyperresponsiveness and neutrophil recruitment induced by acute ozone exposure. Therefore, we examined the role of IL-17A in obesity-related increases in the response to ozone observed in obese mice. Lean wild-type and obese db/db mice were pretreated with IL-17A-blocking or isotype antibodies, exposed to air or ozone (2 ppm for 3 h), and evaluated 24 hours later. Microarray analysis of lung tissue gene expression was used to examine the mechanistic basis for effects of anti-IL-17A. Compared with lean mice, ozone-exposed obese mice had greater concentrations of BAL IL-17A and greater numbers of pulmonary IL-17A+ cells. Ozone-induced increases in BAL IL-23 and CCL20, cytokines important for IL-17A+ cell recruitment and activation, were also greater in obese mice. Anti-IL-17A treatment reduced ozone-induced airway hyperresponsiveness toward levels observed in lean mice. Anti-IL-17A treatment also reduced BAL neutrophils in both lean and obese mice, possibly because of reductions in CXCL1. Microarray analysis identified gastrin-releasing peptide (GRP) receptor (Grpr) among those genes that were both elevated in the lungs of obese mice after ozone exposure and reduced after anti-IL-17A treatment. Furthermore, ozone exposure increased BAL GRP to a greater extent in obese than in lean mice, and GRP-neutralizing antibody treatment reduced obesity-related increases in ozone-induced airway hyperresponsiveness and neutrophil recruitment. Our data indicate that IL-17A contributes to augmented responses to ozone in db/db mice. Furthermore, IL-17A appears to act at least in part by inducing expression of Grpr.


Subject(s)
Gastrin-Releasing Peptide/immunology , Interleukin-17/immunology , Obesity/pathology , Ozone/toxicity , Receptors, Bombesin/metabolism , Respiratory Hypersensitivity/immunology , Animals , Antibodies, Blocking/pharmacology , Chemokine CCL20/immunology , Chemokine CXCL1/immunology , Female , Interleukin-23 Subunit p19/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration/immunology , Neutrophils/immunology , Receptors, Bombesin/genetics
13.
Am J Respir Cell Mol Biol ; 55(4): 521-531, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27148627

ABSTRACT

After a single or multiple intratracheal instillations of Stachybotrys chartarum (S. chartarum or black mold) spores in BALB/c mice, we characterized cytokine production, metabolites, and inflammatory patterns by analyzing mouse bronchoalveolar lavage (BAL), lung tissue, and plasma. We found marked differences in BAL cell counts, especially large increases in lymphocytes and eosinophils in multiple-dosed mice. Formation of eosinophil-rich granulomas and airway goblet cell metaplasia were prevalent in the lungs of multiple-dosed mice but not in single- or saline-dosed groups. We detected changes in the cytokine expression profiles in both the BAL and plasma. Multiple pulmonary exposures to S. chartarum induced significant metabolic changes in the lungs but not in the plasma. These changes suggest a shift from type 1 inflammation after an acute exposure to type 2 inflammation after multiple exposures to S. chartarum. Eotaxin, vascular endothelial growth factor (VEGF), MIP-1α, MIP-1ß, TNF-α, and the IL-8 analogs macrophage inflammatory protein-2 (MIP-2) and keratinocyte chemoattractant (KC), had more dramatic changes in multiple- than in single-dosed mice, and parallel the cytokines that characterize humans with histories of mold exposures versus unexposed control subjects. This repeated exposure model allows us to more realistically characterize responses to mold, such as cytokine, metabolic, and cellular changes.

14.
J Immunotoxicol ; 13(3): 428-38, 2016 05.
Article in English | MEDLINE | ID: mdl-27043160

ABSTRACT

Exposure to subacute ozone (O3) causes pulmonary neutrophil recruitment. In mice, this recruitment requires IL-17A. Ozone also causes expression of IL-23 and IL-1, which can induce IL-17A. The purpose of this study was to examine the hypothesis that IL-23 and IL-1 contribute to IL-17A expression and subsequent neutrophil recruitment after subacute O3 exposure. Wild-type, IL-23(-/-), and Flt3l(-/-) mice were exposed to air or 0.3 ppm O3 for 72 h. Flt3l(-/-) mice lack conventional dendritic cells (cDC) that can express IL-23 and IL-1. Other wild-type mice were pre-treated with saline or the IL-1R1 antagonist anakinra prior to O3 exposure. After exposure, bronchoalveolar lavage (BAL) was performed and lung tissue harvested. The results indicated that pulmonary Il17a mRNA abundance and IL-17A(+) F4/80(+) cells were significantly reduced in O3-exposed IL-23(-/-) vs in wild-type mice. In contrast, anakinra had no effect on Il23a or Il17a pulmonary mRNA abundance or on BAL concentrations of the neutrophil survival factor G-CSF, but anakinra did reduce BAL neutrophil numbers, likely because anakinra also reduced BAL IL-6. Compared to air, O3 caused a significant increase in DC numbers in wild-type, but not in Flt3(-/-) mice. However, there was no significant difference in Il23a or Il17a mRNA abundance or in BAL neutrophil count in O3-exposed Flt3(-/-) vs in wild-type mice. From these results, it was concluded that IL-23 but not IL-1 contributes to the IL-17A expression induced by subacute O3 exposure. Induction of IL-23 by O3 does not appear to require cDC.


Subject(s)
Dendritic Cells/immunology , Interleukin-17/metabolism , Interleukin-23/metabolism , Lung/immunology , Ozone/immunology , Administration, Inhalation , Animals , Antigens, Differentiation/metabolism , Cells, Cultured , Gene Expression Regulation , Humans , Interleukin-1/metabolism , Interleukin-17/genetics , Interleukin-23/genetics , Interleukin-6/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration , Ozone/toxicity , fms-Like Tyrosine Kinase 3/genetics
15.
Am J Respir Cell Mol Biol ; 54(4): 524-31, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26407210

ABSTRACT

Tissue factor (TF) is best known as a cellular initiator of coagulation, but it is also a multifunctional protein that has been implicated in multiple pathophysiologic conditions, including asthma. In the lung, airway epithelial cells express TF, but it is unknown how TF expression is regulated by asthma-associated mediators. We investigated the role of IL-13, a type 2 cytokine, alone and in combination with compressive stress, which mimics asthmatic bronchoconstriction, on TF expression and release of TF-positive extracellular vesicles from primary normal human bronchial epithelial cells. Well-differentiated normal human bronchial epithelial cells were treated with IL-13 and compressive stress, alone and in combination. TF mRNA, protein and activity were measured in the cells and conditioned media. TF was also measured in the bronchoalveolar lavage (BAL) fluid of allergen-challenged mice and patients with asthma. IL-13 and compressive stress increased TF expression, but only compressive stress induced TF-positive extracellular vesicle release. Pretreatment with IL-13 augmented compressive stress-induced TF expression and release. TF protein and activity in BAL fluid were increased in allergen-sensitized and -challenged mice. TF was elevated in the BAL fluid of patients with mild asthma after an allergen challenge. Our in vitro and in vivo data indicate close cooperation between mechanical and inflammatory stimuli on TF expression and release of TF-positive extracellular vesicles in the lungs, which may contribute to pathophysiology of asthma.


Subject(s)
Bronchi/metabolism , Interleukin-13/physiology , Stress, Physiological , Thromboplastin/metabolism , Bronchi/cytology , Bronchoalveolar Lavage Fluid , Cells, Cultured , Epithelial Cells/metabolism , Humans , Ovalbumin/administration & dosage , RNA, Messenger/genetics , Thromboplastin/genetics
16.
Am J Physiol Lung Cell Mol Physiol ; 309(7): L736-46, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26276827

ABSTRACT

Ozone causes airway hyperresponsiveness (AHR) and pulmonary inflammation. Rho kinase (ROCK) is a key regulator of smooth muscle cell contraction and inflammatory cell migration. To determine the contribution of the two ROCK isoforms ROCK1 and ROCK2 to ozone-induced AHR, we exposed wild-type, ROCK1(+/-), and ROCK2(+/-) mice to air or ozone (2 ppm for 3 h) and evaluated mice 24 h later. ROCK1 or ROCK2 haploinsufficiency did not affect airway responsiveness in air-exposed mice but significantly reduced ozone-induced AHR, with a greater reduction in ROCK2(+/-) mice despite increased bronchoalveolar lavage (BAL) inflammatory cells in ROCK2(+/-) mice. Compared with wild-type mice, ozone-induced increases in BAL hyaluronan, a matrix protein implicated in ozone-induced AHR, were lower in ROCK1(+/-) but not ROCK2(+/-) mice. Ozone-induced increases in other inflammatory moieties reported to contribute to ozone-induced AHR (IL-17A, osteopontin, TNFα) were not different in wild-type vs. ROCK1(+/-) or ROCK2(+/-) mice. We also observed a dose-dependent reduction in ozone-induced AHR after treatment with the ROCK1/ROCK2 inhibitor fasudil, even though fasudil was administered after induction of inflammation. Ozone increased pulmonary expression of ROCK2 but not ROCK1 or RhoA. A ROCK2 inhibitor, SR3677, reduced contractile forces in primary human airway smooth muscle cells, confirming a role for ROCK2 in airway smooth muscle contraction. Our results demonstrate that ozone-induced AHR requires ROCK. Whereas ROCK1-dependent changes in hyaluronan may contribute to ROCK1's role in O3-induced AHR, the role of ROCK2 is downstream of inflammation, likely at the level of airway smooth muscle contraction.


Subject(s)
Bronchial Hyperreactivity , Oxidants, Photochemical/adverse effects , Ozone/adverse effects , Pneumonia , rho-Associated Kinases/biosynthesis , Animals , Bronchial Hyperreactivity/chemically induced , Bronchial Hyperreactivity/genetics , Bronchial Hyperreactivity/metabolism , Bronchial Hyperreactivity/pathology , Bronchial Hyperreactivity/physiopathology , Dose-Response Relationship, Drug , Gene Expression Regulation, Enzymologic/drug effects , Humans , Interleukin-17/genetics , Interleukin-17/metabolism , Mice , Mice, Mutant Strains , Muscle Contraction/drug effects , Muscle Contraction/genetics , Muscle, Smooth/metabolism , Muscle, Smooth/pathology , Muscle, Smooth/physiopathology , Osteopontin/genetics , Osteopontin/metabolism , Oxidants, Photochemical/pharmacology , Ozone/pharmacology , Pneumonia/chemically induced , Pneumonia/genetics , Pneumonia/metabolism , Pneumonia/pathology , Pneumonia/physiopathology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , rho-Associated Kinases/genetics
17.
PLoS One ; 10(7): e0131236, 2015.
Article in English | MEDLINE | ID: mdl-26135595

ABSTRACT

We examined the role of γδ T cells in the induction of alternatively activated M2 macrophages and the resolution of inflammation after ozone exposure. Wildtype (WT) mice and mice deficient in γδ T cells (TCRδ-/- mice) were exposed to air or to ozone (0.3 ppm for up to 72h) and euthanized immediately or 1, 3, or 5 days after cessation of exposure. In WT mice, M2 macrophages accumulated in the lungs over the course of ozone exposure. Pulmonary mRNA abundance of the M2 genes, Arg1, Retnla, and Clec10a, also increased after ozone. In contrast, no evidence of M2 polarization was observed in TCRδ-/- mice. WT but not TCRδ-/- mice expressed the M2c polarizing cytokine, IL-17A, after ozone exposure and WT mice treated with an IL-17A neutralizing antibody exhibited attenuated ozone-induced M2 gene expression. In WT mice, ozone-induced increases in bronchoalveolar lavage neutrophils and macrophages resolved quickly after cessation of ozone exposure returning to air exposed levels within 3 days. However, lack of M2 macrophages in TCRδ-/- mice was associated with delayed clearance of inflammatory cells after cessation of ozone and increased accumulation of apoptotic macrophages in the lungs. Delayed restoration of normal lung architecture was also observed in TCRδ-/- mice. In summary, our data indicate that γδ T cells are required for the resolution of ozone-induced inflammation, likely because γδ T cells, through their secretion of IL-17A, contribute to changes in macrophage polarization that promote clearance of apoptotic cells.


Subject(s)
Lung/immunology , Macrophages/immunology , Ozone/toxicity , Pneumonia/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/immunology , Animals , Antibodies, Neutralizing/pharmacology , Apoptosis/immunology , Arginase/genetics , Arginase/immunology , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Cell Movement/drug effects , Gene Expression Regulation , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/immunology , Interleukin-17/antagonists & inhibitors , Interleukin-17/genetics , Interleukin-17/immunology , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Lung/drug effects , Lung/pathology , Macrophage Activation/drug effects , Macrophages/drug effects , Macrophages/pathology , Male , Mice , Mice, Knockout , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/pathology , Pneumonia/chemically induced , Pneumonia/genetics , Pneumonia/pathology , Receptors, Antigen, T-Cell, gamma-delta/deficiency , Receptors, Antigen, T-Cell, gamma-delta/genetics , T-Lymphocytes/drug effects , T-Lymphocytes/pathology
18.
Clin Exp Allergy ; 45(2): 457-70, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25323425

ABSTRACT

BACKGROUND: Major features of allergic asthma include airway hyperresponsiveness (AHR), eosinophilic inflammation, and goblet cell metaplasia. Rho kinase (ROCK) is a serine/threonine protein kinase that regulates the actin cytoskeleton. By doing so, it can modulate airway smooth muscle cell contraction and leucocyte migration and proliferation. This study was designed to determine the contributions of the two ROCK isoforms, ROCK1 and ROCK2, to AHR, inflammation and goblet cell metaplasia in a mast cell-dependent model of allergic airways disease. METHODS AND RESULTS: Repeated intranasal challenges with OVA caused AHR, eosinophilic inflammation, and goblet cell hyperplasia in wild-type (WT) mice. OVA-induced AHR was partially or completely abrogated in mice haploinsufficient for ROCK2 (ROCK2(+/-) ) or ROCK1 (ROCK1(+/-) ), respectively. In contrast, there was no effect of ROCK insufficiency on allergic airways inflammation, although both ROCK1 and ROCK2 insufficiency attenuated mast cell degranulation. Goblet cell hyperplasia, as indicated by PAS staining, was not different in ROCK1(+/-) vs. WT mice. However, in ROCK2(+/-) mice, goblet cell hyperplasia was reduced in medium but not large airways. Maximal acetylcholine-induced force generation was reduced in tracheal rings from ROCK1(+/-) and ROCK2(+/-) vs. WT mice. The ROCK inhibitor, fasudil, also reduced airway responsiveness in OVA-challenged mice, without affecting inflammatory responses. CONCLUSION: In a mast cell model of allergic airways disease, ROCK1 and ROCK2 both contribute to AHR, likely through direct effects on smooth muscle cell and effects on mast cell degranulation. In addition, ROCK2 but not ROCK1 plays a role in allergen-induced goblet cell hyperplasia.


Subject(s)
Respiratory Hypersensitivity/enzymology , rho-Associated Kinases/metabolism , Allergens/immunology , Animals , Bronchoalveolar Lavage Fluid/immunology , Cytokines/metabolism , Disease Models, Animal , Enzyme Activation/genetics , Female , Goblet Cells/metabolism , Goblet Cells/pathology , Immunoglobulin E/blood , Immunoglobulin E/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Inflammation Mediators/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Mice , Mice, Knockout , Ovalbumin/immunology , Respiratory Hypersensitivity/genetics , Respiratory Hypersensitivity/immunology , Respiratory Hypersensitivity/physiopathology , Th2 Cells/immunology , Th2 Cells/metabolism , rho-Associated Kinases/genetics
19.
PLoS One ; 9(5): e97707, 2014.
Article in English | MEDLINE | ID: mdl-24823369

ABSTRACT

Ozone is an air pollutant that causes pulmonary symptoms. In mice, ozone exposure causes pulmonary injury and increases bronchoalveolar lavage macrophages and neutrophils. We have shown that IL-17A is important in the recruitment of neutrophils after subacute ozone exposure (0.3 ppm for 24-72 h). We hypothesized that γδ T cells are the main producers of IL-17A after subacute ozone. To explore this hypothesis we exposed wildtype mice and mice deficient in γδ T cells (TCRδ-/-) to ozone or room air. Ozone-induced increases in BAL macrophages and neutrophils were attenuated in TCRδ-/- mice. Ozone increased the number of γδ T cells in the lungs and increased pulmonary Il17a mRNA expression and the number of IL-17A+ CD45+ cells in the lungs and these effects were abolished in TCRδ-/- mice. Ozone-induced increases in factors downstream of IL-17A signaling, including G-CSF, IL-6, IP-10 and KC were also decreased in TCRδ-/- versus wildtype mice. Neutralization of IL-17A during ozone exposure in wildtype mice mimicked the effects of γδ T cell deficiency. TNFR2 deficiency and etanercept, a TNFα antagonist, also reduced ozone-induced increases in Il17a mRNA, IL-17A+ CD45+ cells and BAL G-CSF as well as BAL neutrophils. TNFR2 deficient mice also had decreased ozone-induced increases in Ccl20, a chemoattractant for IL-17A+ γδ T cells. Il17a mRNA and IL-17A+ γδ T cells were also lower in obese Cpefat versus lean WT mice exposed to subacute ozone, consistent with the reduced neutrophil recruitment observed in the obese mice. Taken together, our data indicate that pulmonary inflammation induced by subacute ozone requires γδ T cells and TNFα-dependent recruitment of IL-17A+ γδ T cells to the lung.


Subject(s)
Interleukin-17/metabolism , Lung/drug effects , Ozone/toxicity , Pneumonia/chemically induced , Pneumonia/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocytes/immunology , Analysis of Variance , Animals , Bronchoalveolar Lavage , DNA Primers/genetics , Etanercept , Flow Cytometry , Immunoglobulin G , Lung/immunology , Macrophages/immunology , Mice , Mice, Knockout , Neutrophils/immunology , Real-Time Polymerase Chain Reaction , Receptors, Antigen, T-Cell, gamma-delta/genetics , Receptors, Tumor Necrosis Factor , Receptors, Tumor Necrosis Factor, Type II , T-Lymphocytes/metabolism
20.
Am J Physiol Lung Cell Mol Physiol ; 306(6): L508-20, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24381131

ABSTRACT

Adiponectin is an adipose-derived hormone with anti-inflammatory activity. Following subacute ozone exposure (0.3 ppm for 24-72 h), neutrophilic inflammation and IL-6 are augmented in adiponectin-deficient (Adipo(-/-)) mice. The IL-17/granulocyte colony-stimulating factor (G-CSF) axis is required for this increased neutrophilia. We hypothesized that elevated IL-6 in Adipo(-/-) mice contributes to their augmented responses to ozone via effects on IL-17A expression. Therefore, we generated mice deficient in both adiponectin and IL-6 (Adipo(-/-)/IL-6(-/-)) and exposed them to ozone or air. In ozone-exposed mice, bronchoalveolar lavage (BAL) neutrophils, IL-6, and G-CSF, and pulmonary Il17a mRNA expression were greater in Adipo(-/-) vs. wild-type mice, but reduced in Adipo(-/-)/IL-6(-/-) vs. Adipo(-/-) mice. IL-17A(+) F4/80(+) cells and IL-17A(+) γδ T cells were also reduced in Adipo(-/-)/IL-6(-/-) vs. Adipo(-/-) mice exposed to ozone. Only BAL neutrophils were reduced in IL-6(-/-) vs. wild-type mice. In wild-type mice, IL-6 was expressed in Gr-1(+)F4/80(-)CD11c(-) cells, whereas in Adipo(-/-) mice F4/80(+)CD11c(+) cells also expressed IL-6, suggesting that IL-6 is regulated by adiponectin in these alveolar macrophages. Transcriptomic analysis identified serum amyloid A3 (Saa3), which promotes IL-17A expression, as the gene most differentially augmented by ozone in Adipo(-/-) vs. wild-type mice. After ozone, Saa3 mRNA expression was markedly greater in Adipo(-/-) vs. wild-type mice but reduced in Adipo(-/-)/IL-6(-/-) vs. Adipo(-/-) mice. In conclusion, our data support a pivotal role of IL-6 in the hyperinflammatory condition observed in Adipo(-/-) mice after ozone exposure and suggest that this role of IL-6 involves its ability to induce Saa3, IL-17A, and G-CSF.


Subject(s)
Adiponectin/deficiency , Inflammation/immunology , Interleukin-6/metabolism , Macrophages, Alveolar/metabolism , Ozone/pharmacology , Animals , Bronchoalveolar Lavage Fluid/cytology , Granulocyte Colony-Stimulating Factor/genetics , Granulocyte Colony-Stimulating Factor/immunology , Interleukin-17/genetics , Interleukin-17/immunology , Interleukin-6/genetics , Lung/metabolism , Lymphocyte Count , Macrophages, Alveolar/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/immunology , Oxidants, Photochemical/pharmacology , RNA, Messenger/biosynthesis , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Serum Amyloid A Protein/genetics , T-Lymphocytes/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...