Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 147(16): 164304, 2017 Oct 28.
Article in English | MEDLINE | ID: mdl-29096455

ABSTRACT

We observed hyperfine-resolved high-resolution fluorescence excitation spectra of k = 0, N = 1 ← 0 transitions in 82 vibronic bands of the Ã2B2 ← X̃2A1 system of 14NO2 in the 14 500-16 800 cm-1 region by crossing a jet-cooled molecular beam and a single-mode dye laser beam at right angles. We determined hyperfine interaction constants of the lower and upper states for all the observed vibronic bands based on the analysis of the hyperfine structures of k = 0, N = 1 ← 0 transitions. Most of the determined Fermi contact interaction constants were found to be distributed in 0.0013-0.0038 cm-1, which are intermediate in magnitude between those in lower and higher energy region reported by other groups. A sharp decreasing of the Fermi contact interaction constant was found in 16 200-16 600 cm-1, and it may be caused by the interaction with the dark C̃2A2 state. The hyperfine interaction constants are powerful clues to obtain reliable vibronic assignment. We tentatively assigned vibronic bands located at 14 836 cm-1, 15 586 cm-1, and 16 322 cm-1 as the transitions to the intrinsic (0,7,0), (0,8,0), and (0,9,0) vibrational levels of the Ã2B2 state, respectively.

2.
J Chem Phys ; 142(11): 114302, 2015 Mar 21.
Article in English | MEDLINE | ID: mdl-25796244

ABSTRACT

Rotationally resolved high-resolution fluorescence excitation spectra of the 0-0 band of the B̃(2)E(')←X̃(2)A2(') transition of the (15)N substituted nitrate radical were observed for the first time, by crossing a jet-cooled molecular beam and a single-mode dye laser beam at right angles. Several thousand rotational lines were detected in the 15 080-15 103 cm(-1) region. We observed the Zeeman splitting of intense lines up to 360 G in order to obtain secure rotational assignment. Two, nine, and seven rotational line pairs with 0.0248 cm(-1) spacing were assigned to the transitions from the X̃(2)A2(') (υ″ = 0, k″ = 0, N″ = 1, J″ = 0.5 and 1.5) to the (2)E3/2(') (J' = 1.5), (2)E1/2(') (J' = 0.5), and (2)E1/2(') (J' = 1.5) levels, respectively, based on the ground state combination differences and the Zeeman splitting patterns. The observed spectrum was complicated due to the vibronic coupling between the bright B̃(2)E(') (υ = 0) state and surrounding dark vibronic states. Some series of rotational lines other than those from the X̃(2)A2(') (J = 0.5 and 1.5) levels were also assigned by the ground state combination differences and the observed Zeeman splitting. The rotational branch structures were identified, and the molecular constants of the B̃(2)E1/2(') (υ = 0) state were estimated by a deperturbed analysis to be T0 = 15 098.20(4) cm(-1), B = 0.4282(7) cm(-1), and DJ = 4 × 10(-4) cm(-1). In the observed region, both the (2)E1/2(') and (2)E3/2(') spin-orbit components were identified, and the spin-orbit interaction constant of the B̃(2)E(') (υ = 0) state was estimated to be -12 cm(-1) as the lower limit.

3.
J Chem Phys ; 141(18): 184307, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25399147

ABSTRACT

Rotationally resolved high-resolution fluorescence excitation spectra of (14)NO3 radical have been observed for the 662 nm band, which is assigned as the 0-0 band of the B̃(2)E' ←X̃(2)A2' transition, by crossing a single-mode laser beam perpendicularly to a collimated molecular beam. More than 3000 rotational lines were detected in 15,070-15,145 cm(-1) region, but it is difficult to find the rotational line series. Remarkable rotational line pairs, whose interval is about 0.0246 cm(-1), were found in the observed spectrum. This interval is the same amount with the spin-rotation splitting of the X̃(2)A2' (υ = 0, k = 0, N = 1) level. From this interval and the observed Zeeman splitting up to 360 G, seven line pairs were assigned as the transitions to the (2)E'(3/2) (J' = 1.5) levels and 15 line pairs were assigned as the transitions to the (2)E'(1/2) (J' = 0.5) levels. From the rotational analysis, we recognized that the (2)E' state splits into (2)E'(3/2) and (2)E'(1/2) by the spin-orbit interaction and the effective spin-orbit interaction constant was roughly estimated as -21 cm(-1). From the number of the rotational line pairs, we concluded that the complicated rotational structure of this 662 nm band of (14)NO3 mainly owes to the vibronic interaction between the B̃(2)E' state and the dark Ã(2)E″ state through the a2″ symmetry vibrational mode.

4.
Phys Chem Chem Phys ; 12(40): 13243-7, 2010 Oct 28.
Article in English | MEDLINE | ID: mdl-20820478

ABSTRACT

The rotationally resolved high-resolution fluorescence excitation spectrum of the 0-0 band in the S(1)← S(0) electronic excitation of thioanisole was observed using the techniques of a collimated supersonic jet and a single-mode ultraviolet laser for the first time. High accurate rotational constants for the S(0) and the S(1) states have been determined by precisely calibrated transition energies of about 1000 assigned rotational lines. The molecular structure of thioanisole has been estimated by high-level MO calculations. The planarity of thioanisole in the S(0) and the S(1) states was also demonstrated clearly. The lifetime of the S(1) state was estimated to be 2.0 ns from the observed line width. This line shape did not change with the magnetic field of 1 Tesla, suggesting that the main radiationless process should be internal conversion to the S(0) state.

5.
J Chem Phys ; 131(22): 224318, 2009 Dec 14.
Article in English | MEDLINE | ID: mdl-20001047

ABSTRACT

Vibrational level structure in the S(0) (1)A(g) and S(1) (1)B(3u) states of pyrene was investigated through analysis of fluorescence excitation spectra and dispersed fluorescence spectra for single vibronic level excitation in a supersonic jet and through referring to the results of ab initio theoretical calculation. The vibrational energies are very similar in the both states. We found broad spectral feature in the dispersed fluorescence spectrum for single vibronic level excitation with an excess energy of 730 cm(-1). This indicates that intramolecular vibrational redistribution efficiently occurs at small amounts of excess energy in the S(1) (1)B(3u) state of pyrene. We have also observed a rotationally resolved ultrahigh-resolution spectrum of the 0(0) (0) band. Rotational constants have been determined and it has been shown that the pyrene molecule is planar in both the S(0) and S(1) states, and that its geometrical structure does not change significantly upon electronic excitation. Broadening of rotational lines with the magnetic field by the Zeeman splitting of M(J) levels was very small, indicating that intersystem crossing to the triplet state is minimal. The long fluorescence lifetime indicates that internal conversion to the S(0) state is also slow. We conclude that the similarity of pyrene's molecular structure and potential energy curve in its S(0) and S(1) states is the main cause of the slow radiationless transitions.

6.
J Chem Phys ; 131(2): 024303, 2009 Jul 14.
Article in English | MEDLINE | ID: mdl-19603987

ABSTRACT

We have observed rotationally resolved ultrahigh-resolution fluorescence excitation spectra of the 0(0)(0) (a-type) and 0(0)(0)+467 cm(-1) (b-type) bands of the S(2) (1)A(1)<--S(0) (1)A(1) transition of jet-cooled azulene. The observed linewidth is 0.0017 cm(-1), which corresponds to the lifetime of 3.1 ns in the S(2) state. Zeeman splitting of rotational lines is very small so that intersystem crossing to the triplet state is considered to be very slow. Inertial defect is very small and the molecule is considered to be planar in the S(0) and S(2) states (C(2v) symmetry). Rotational constants of the S(2) state are almost identical to those of the S(0) state, indicating that geometrical structure is similar in both electronic states. In this case, internal conversion (IC) by vibronic coupling is thought to be inactive. Therefore, the main radiationless transition process in the S(2) (1)A(1) state of azulene was identified to be IC to the S(1) (1)B(2) state. However, this S(2)-->S(1) IC is still slower than that of conventional polycyclic aromatic hydrocarbons. We consider it to be due to the shallower potential energy curve in the S(1) (1)B(2) state, which is also responsible for the extraordinarily fast S(1)-->S(0) IC in the isolated azulene molecule.

7.
J Chem Phys ; 130(19): 194304, 2009 May 21.
Article in English | MEDLINE | ID: mdl-19466833

ABSTRACT

Rotationally resolved high-resolution spectra and fluorescence decay curves have been observed for weak and short-lived vibronic bands of the S(1) (1)B(3u) <-- S(0) (1)A(g) transition of naphthalene. Fluorescence lifetime of the vibronic band with an excess energy of 1390 cm(-1) (0(0)(0) + 1390 cm(-1) band) is remarkably shorter than that of other bands. Zeeman splitting of rotational lines is very small, so that the main radiationless process is not intersystem crossing to the triplet state but internal conversion to the ground state. The lifetime is thought to be governed by the strength of vibronic coupling between vibrational levels of the S(0) and S(1) states. As for the 0(0)(0) + 2570 cm(-1) band, energy shifts were found in only a few rotational levels although the excess energy was higher than the threshold of intramolecular vibrational redistribution. We conclude that all of the rotational levels are mixed with other vibrational levels. The 0(0)(0) + 3068 cm(-1) band spectrum is fairly complicated with numerous rotational lines, which is attributed to strong vibronic coupling with the S(2) (1)B(2u) state.

8.
J Chem Phys ; 130(13): 134315, 2009 Apr 07.
Article in English | MEDLINE | ID: mdl-19355740

ABSTRACT

Rotationally resolved ultrahigh-resolution spectra of the S(1) (1)B(2u)<--S(0) (1)A(g) transition of anthracene-h(10) and anthracene-d(10) have been observed using a single-mode UV laser and a collimated supersonic jet. We have determined rotational constants of the zero-vibrational levels of the S(0) and S(1) states by analyzing the precisely calibrated transition wavenumbers of rotational lines. We measured Zeeman splitting of each rotational line in the external magnetic field, of which the magnitude was small and strongly dependent on the rotational quantum numbers. We have shown that the magnetic moment in the S(1) (1)B(2u) state arises from J-L coupling with the S(2) (1)B(3u) state and that mixing with the triplet state is negligibly small. We concluded that the main radiationless transition in the S(1) state of anthracene is not intersystem crossing to the triplet state but internal conversion to the ground state. We also examined methods of ab initio theoretical calculation to determine which method most closely yielded the same values of rotational constants as the experimentally obtained ones. Moller-Plesset second-order perturbation method with a 6-31G(d,p) basis set yielded approximately the same values for the S(0) (1)A(g) state with an error of less than 0.04%. Geometrical structure in the S(0) (1)A(g) state of the isolated anthracene molecule has been accurately determined by this calculation. However, configurational-interaction with single excitations, time-dependent Hartree-Fock, and time-dependent density-function-theory methods did not yield satisfactory results for the excitation energy of the S(1) (1)B(2u) state. Symmetry-adapted-cluster configuration-interaction calculation was sufficiently good for the excitation energy and rotational constants.

9.
J Phys Chem A ; 113(11): 2366-71, 2009 Mar 19.
Article in English | MEDLINE | ID: mdl-19231826

ABSTRACT

Fluorescence excitation spectra and dispersed fluorescence spectra of jet-cooled 9-methylanthracene-h12 and -d12 (9MA-h12 and 9MA-d12) have been observed, and the energy levels of methyl internal rotation (CH3 torsion) in the S0 and S1 states have been analyzed. The molecular symmetry of 9MA is the same as that of toluene (G12). Because of two-fold symmetry in the pi system, the potential curve has six-fold barriers to CH3 rotation. In toluene, the barrier height to CH3 rotation V6 is very small, nearly free rotation. As for 9MA-h12, we could fit the level energies by potential curves with the barrier heights of V6(S0) = 118 cm(-1) and V6(S1) = 33 cm(-1). These barrier heights are remarkably larger than those of toluene and are attributed to hyperconjugation between the pi orbitals and methyl group. The dispersed fluorescence spectrum showed broad emission for the excitation of 0(0)(0) + 386 cm(-1) band, indicating that intramolecular vibrational redistribution efficiently occurs, even in the vibronic level of low excess energy of the isolated 9MA molecule.

10.
J Phys Chem A ; 110(33): 10000-5, 2006 Aug 24.
Article in English | MEDLINE | ID: mdl-16913672

ABSTRACT

Fluorescence excitation spectra of dibenzofuran in a supersonic jet are observed and the vibronic structure is analyzed for the S(1) (1)A(1) (pipi) and S(0) states. An observation of the rotational envelopes reveals that the band is a B-type band. However, it is shown that most of the strong vibronic bands are A-type bands. The intensity arises from vibronic coupling with the S(2) (1)B(2) state. We find a broad emission in the dispersed fluorescence spectrum for the excitation of the high vibrational levels in the S(1) state. This indicates that intramolecular vibrational redistribution (IVR) occurs efficiently in the isolated dibenzofuran molecule.

11.
J Chem Phys ; 122(14): 144303, 2005 Apr 08.
Article in English | MEDLINE | ID: mdl-15931715

ABSTRACT

Doppler-free two-photon excitation spectrum and the Zeeman effect of the S1 1B1u(v21=1) <-- S0 1Ag(v=0) transition of naphthalene-d8 have been measured. 908 lines of Q(Ka)Q(J)KaKc transition of J=0-41, Ka=0-20 were assigned, and the molecular constants of the S1 1B1u(v21=1) state were determined. Perturbations were observed, and those were identified as originating from Coriolis interaction. No perturbation originating from an interaction with triplet state was observed. The Zeeman splittings from lines of a given J were observed to increase with Kc, and those of the Kc=J levels increased linearly with J. The Zeeman effects are shown to be originating from the magnetic moment of the S1 1B1u state, which is along the c axis and is induced by mixing of the S2 1B3u state to the S1 1B1u state by J-L coupling. Rotationally resolved levels were found not to be mixed with a triplet state from the Zeeman spectra. Accordingly, it is concluded that nonradiative decay of an isolated naphthalene excited to low rovibronic levels in the S1 1B1u state does not occur through the intersystem mixing. This is at variance with generally accepted understanding of the pathways of the nonradiative decay.

12.
J Phys Chem A ; 109(32): 7127-33, 2005 Aug 18.
Article in English | MEDLINE | ID: mdl-16834076

ABSTRACT

Doppler-free two-photon excitation spectra and the Zeeman effects for the 1 band of the S1 1B2u <-- S0 1A1g transition in gaseous benzene-d6 were measured. Although the spectral lines were strongly perturbed, almost all of the lines near the band origin could be assigned. From a deperturbation analysis, the perturbation near the band origin was identified as originating from an anharmonic resonance interaction. Perturbation centered at K = 28-29 in the 14(0)1 band was analyzed, and it was identified as originating from a perpendicular Coriolis interaction. The symmetry and the assignment of the perturbing state proposed by Schubert et al. (Schubert, U.; Riedle, E.; Neusser, H. J. J. Chem. Phys. 1989, 90, 5994.) were confirmed. No perturbation originating from an interaction with a triplet state was observed in both bands. From the Zeeman spectra and the analysis, it is demonstrated that rotationally resolved levels are not mixed with a triplet state. The intersystem mixing is not likely to occur at levels of low excess energy in the S1 state of an isolated benzene. Nonradiative decay of an isolated benzene in the low vibronic levels of the S1 state will occur through the internal mixing followed by the rotational and vibrational relaxation in the S0 state.

14.
J Chem Phys ; 120(14): 6439-48, 2004 Apr 08.
Article in English | MEDLINE | ID: mdl-15267533

ABSTRACT

Sub-Doppler high-resolution excitation spectra and the Zeeman effects of the 6(0)(1), 1(0)(1)6(0)(1), and 1(0)(2)6(0)(1) bands of the S1(1)B2u<--S(0)(1)A1g transition of benzene were measured by crossing laser beam perpendicular to a collimated molecular beam. 1593 rotational lines of the 1(0) (1)6(0) (1) band and 928 lines of the 1(0)(2)6(0)(1) band were assigned, and the molecular constants of the excited states were determined. Energy shifts were observed for the S1(1)B2u(v1=1,v6=1,J,Kl=-11) levels, and those were identified as originating from a perpendicular Coriolis interaction. Many energy shifts were observed for the S1(1)B2u(v1=2,v6=1,J,Kl) levels. The Zeeman splitting of a given J level was observed to increase with K and reach the maximum at K=J, which demonstrates that the magnetic moment lies perpendicular to the molecular plane. The Zeeman splittings of the K=J levels were observed to increase linearly with J. From the analysis, the magnetic moment is shown to be originating mostly from mixing of the S1(1)B2u and S2(1)B1u states by the J-L coupling (electronic Coriolis interaction). The number of perturbations was observed to increase as the excess energy increases, and all the perturbing levels were found to be a singlet state from the Zeeman spectra.

SELECTION OF CITATIONS
SEARCH DETAIL
...