Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 13(4): 687-694, 2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35450365

ABSTRACT

Krüppel-like factor 5 (KLF5) is a potential target for anticancer drugs. However, as an intrinsically disordered protein (IDP) whose tertiary structure cannot be solved, innovative strategies are needed. We focused on its hydrophobic α-helix structure, defined as an induced helical motif (IHM), which is a possible interface for protein-protein interaction. Using mathematical analyses predicting the α-helix's structure and hydrophobicity, a 4-amino-acid site (V-A-I-F) was identified as an IHM. Low-molecular-weight compounds that mimic the main chain conformation of the α-helix with the four side chains of V-A-I-F were synthesized using bicyclic pyrazinooxadiazine-4,7-dione. These compounds selectively suppressed the proliferation and survival of cancer cells but not noncancer cells and decreased the protein but not mRNA levels of KLF5 in addition to reducing proteins of Wnt signaling. The compounds further suppressed transplanted colorectal cancer cells in vivo without side effects. Our approach appears promising for developing drugs against key IDPs.

2.
ACS Omega ; 6(40): 26601-26612, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34661014

ABSTRACT

Protein-protein interactions (PPIs) are fundamentally important and challenging drug targets. Peptidomimetic molecules of various types have been developed to modulate PPIs. A particularly promising drug discovery strategy, structural peptidomimetics, was designed based on special mimicking of side-chain Cα-Cß bonds. It is simple and versatile. Nevertheless, no quantitative method has been established to evaluate its similarity to a target peptide motif. We developed two methods that enable visual, comprehensive, and quantitative analysis of peptidomimetics: peptide conformation distribution (PCD) plot and peptidomimetic analysis (PMA) map. These methods specifically examine multiple side-chain Cα-Cß bonds of a peptide fragment motif and their corresponding bonds (pseudo-Cα-Cß bonds) in a mimetic molecule instead of φ and ψ angles of a single amino acid in the traditional Ramachandran plot. The PCD plot is an alignment-free method, whereas the PMA map is an alignment-based method providing distinctive and complementary analysis. Results obtained from analysis using these two methods indicate our multifacial α-helix mimetic scaffold 12 as an excellent peptidomimetic that can precisely mimic the spatial positioning of side-chain functional groups of α-helix. These methods are useful for visualized and quantified evaluation of peptidomimetics and for the rational design of new mimetic scaffolds.

3.
Bioorg Med Chem Lett ; 27(20): 4705-4709, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28927787

ABSTRACT

The neuron-restrictive silencing factor NRSF/REST binds to neuron-restrictive silencing elements in neuronal genes and recruits corepressors such as mSin3 to inhibit epigenetically neuronal gene expression. Because dysregulation of NRSF/REST is related to neuropathic pain, here, we have designed compounds to target neuropathic pain based on the mSin3-binding helix structure of NRSF/REST and examined their ability to bind to mSin3 by NMR. One compound, mS-11, binds strongly to mSin3 with a binding mode similar to that of NRSF/REST. In a mouse model of neuropathic pain, mS-11 was found to ameliorate abnormal pain behavior and to reverse lost peripheral morphine analgesia. Furthermore, even in the less well epigenetically defined case of fibromyalgia, mS-11 ameliorated symptoms in a mouse model, suggesting that fibromyalgia is related to the dysfunction of NRSF/REST. Taken together, these findings show that the chemically optimized mimetic mS-11 can inhibit mSin3-NRSF/REST binding and successfully reverse lost peripheral and central morphine analgesia in mouse models of pain.


Subject(s)
Carrier Proteins/metabolism , Chronic Pain/drug therapy , Heterocyclic Compounds, 2-Ring/metabolism , Repressor Proteins/metabolism , Analgesics, Opioid/therapeutic use , Animals , Binding Sites , Carrier Proteins/chemistry , Chronic Pain/pathology , Cold Temperature , Disease Models, Animal , Heterocyclic Compounds, 2-Ring/chemistry , Heterocyclic Compounds, 2-Ring/therapeutic use , Mice , Molecular Docking Simulation , Morphine/therapeutic use , Neuralgia/drug therapy , Neuralgia/pathology , Protein Binding , Protein Domains , Protein Structure, Secondary , Repressor Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...