Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Am J Cancer Res ; 14(2): 429-447, 2024.
Article in English | MEDLINE | ID: mdl-38455422

ABSTRACT

Boron neutron capture therapy (BNCT) is a treatment method that focuses on improving the cure rate of patients with cancer who are difficult to treat using traditional clinical methods. By utilizing the high neutron absorption cross-section of boron, material rich in boron inside tumor cells can absorb neutrons and release high-energy ions, thereby destroying tumor cells. Owing to the short range of alpha particles, this method can precisely target tumor cells while minimizing the inflicted damage to the surrounding normal tissues, making it a potentially advantageous method for treating tumors. Globally, institutions have progressed in registered clinical trials of BNCT for multiple body parts. This review summarized the current achievements in registered clinical trials, Investigator-initiated clinical trials, aimed to integrate the latest clinical research literature on BNCT and to shed light on future study directions.

2.
Int J Mol Sci ; 24(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36982398

ABSTRACT

Artificial intelligence (AI) technology for image recognition has the potential to identify cancer stem cells (CSCs) in cultures and tissues. CSCs play an important role in the development and relapse of tumors. Although the characteristics of CSCs have been extensively studied, their morphological features remain elusive. The attempt to obtain an AI model identifying CSCs in culture showed the importance of images from spatially and temporally grown cultures of CSCs for deep learning to improve accuracy, but was insufficient. This study aimed to identify a process that is significantly efficient in increasing the accuracy values of the AI model output for predicting CSCs from phase-contrast images. An AI model of conditional generative adversarial network (CGAN) image translation for CSC identification predicted CSCs with various accuracy levels, and convolutional neural network classification of CSC phase-contrast images showed variation in the images. The accuracy of the AI model of CGAN image translation was increased by the AI model built by deep learning of selected CSC images with high accuracy previously calculated by another AI model. The workflow of building an AI model based on CGAN image translation could be useful for the AI prediction of CSCs.


Subject(s)
Deep Learning , Neoplasms , Humans , Artificial Intelligence , Neural Networks, Computer , Neoplasms/diagnostic imaging , Neoplastic Stem Cells , Image Processing, Computer-Assisted/methods
3.
Biomedicines ; 10(5)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35625678

ABSTRACT

Deep learning is being increasingly applied for obtaining digital microscopy image data of cells. Well-defined annotated cell images have contributed to the development of the technology. Cell morphology is an inherent characteristic of each cell type. Moreover, the morphology of a cell changes during its lifetime because of cellular activity. Artificial intelligence (AI) capable of recognizing a mouse-induced pluripotent stem (miPS) cell cultured in a medium containing Lewis lung cancer (LLC) cell culture-conditioned medium (cm), miPS-LLCcm cell, which is a cancer stem cell (CSC) derived from miPS cell, would be suitable for basic and applied science. This study aims to clarify the limitation of AI models constructed using different datasets and the versatility improvement of AI models. The trained AI was used to segment CSC in phase-contrast images using conditional generative adversarial networks (CGAN). The dataset included blank cell images that were used for training the AI but they did not affect the quality of predicting CSC in phase contrast images compared with the dataset without the blank cell images. AI models trained using images of 1-day culture could predict CSC in images of 2-day culture; however, the quality of the CSC prediction was reduced. Convolutional neural network (CNN) classification indicated that miPS-LLCcm cell image classification was done based on cultivation day. By using a dataset that included images of each cell culture day, the prediction of CSC remains to be improved. This is useful because cells do not change the characteristics of stem cells owing to stem cell marker expression, even if the cell morphology changes during culture.

4.
J Control Release ; 330: 788-796, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33188824

ABSTRACT

Boron neutron capture therapy (BNCT) is a tumor selective therapy, the effectiveness of which depends on sufficient 10B delivery to and accumulation in tumors. In this study, we used self-assembling A6K peptide nanotubes as boron carriers and prepared new boron agents by simple mixing of A6K and BSH. BSH has been used to treat malignant glioma patients in clinical trials and its drug safety and availability have been confirmed; however, its contribution to BNCT efficacy is low. A6K nanotube delivery improved two major limitations of BSH, including absence of intracellular transduction and non-specific drug delivery to tumor tissue. Varying the A6K peptide and BSH mixture ratio produced materials with different morphologies-determined by electron microscopy-and intracellular transduction efficiencies. We investigated the A6K/BSH 1:10 mixture ratio and found high intracellular boron uptake with no toxicity. Microscopy observation showed intracellular localization of A6K/BSH in the perinuclear region and endosome in human glioma cells. The intracellular boron concentration using A6K/BSH was almost 10 times higher than that of BSH. The systematic administration of A6K/BSH via mouse tail vein showed tumor specific accumulation in a mouse brain tumor model with immunohistochemistry and pharmacokinetic study. Neutron irradiation of glioma cells treated with A6K/BSH showed the inhibition of cell proliferation in a colony formation assay. Boron delivery using A6K peptide provides a unique and simple strategy for next generation BNCT drugs.


Subject(s)
Boron Neutron Capture Therapy , Nanotubes, Peptide , Nanotubes , Animals , Borohydrides , Boron Compounds , Humans , Mice , Oligopeptides , Sulfhydryl Compounds
5.
Biomolecules ; 10(6)2020 06 19.
Article in English | MEDLINE | ID: mdl-32575396

ABSTRACT

Deep-learning workflows of microscopic image analysis are sufficient for handling the contextual variations because they employ biological samples and have numerous tasks. The use of well-defined annotated images is important for the workflow. Cancer stem cells (CSCs) are identified by specific cell markers. These CSCs were extensively characterized by the stem cell (SC)-like gene expression and proliferation mechanisms for the development of tumors. In contrast, the morphological characterization remains elusive. This study aims to investigate the segmentation of CSCs in phase contrast imaging using conditional generative adversarial networks (CGAN). Artificial intelligence (AI) was trained using fluorescence images of the Nanog-Green fluorescence protein, the expression of which was maintained in CSCs, and the phase contrast images. The AI model segmented the CSC region in the phase contrast image of the CSC cultures and tumor model. By selecting images for training, several values for measuring segmentation quality increased. Moreover, nucleus fluorescence overlaid-phase contrast was effective for increasing the values. We show the possibility of mapping CSC morphology to the condition of undifferentiation using deep-learning CGAN workflows.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted , Lung Neoplasms/pathology , Neoplastic Stem Cells/pathology , Animals , Female , Green Fluorescent Proteins/chemistry , Mice , Mice, Inbred BALB C , Mice, Nude , Optical Imaging , Tumor Cells, Cultured
6.
Cancers (Basel) ; 11(2)2019 Feb 03.
Article in English | MEDLINE | ID: mdl-30717462

ABSTRACT

Excess iron causes cancer and is thought to be related to carcinogenesis and cancer progression including stemness, but the details remain unclear. Here, we hypothesized that stemness in cancer is related to iron metabolism and that regulating iron metabolism in cancer stem cells (CSCs) may be a novel therapy. In this study, we used murine induced pluripotent stem cells that expressed specific stem cell genes such as Nanog, Oct3/4, Sox2, Klf4, and c-Myc, and two human cancer cell lines with similar stem cell gene expression. Deferasirox, an orally available iron chelator, suppressed expression of stemness markers and spherogenesis of cells with high stemness status in vitro. Combination therapy had a marked antitumor effect compared with deferasirox or cisplatin alone. Iron metabolism appears important for maintenance of stemness in CSCs. An iron chelator combined with chemotherapy may be a novel approach via suppressing stemness for CSC targeted therapy.

7.
Nanotechnology ; 30(5): 055101, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30499457

ABSTRACT

The surface reactivity of gold nanoparticles (AuNPs) is receiving attention as a radiosensitizer of cancer cells for radiation therapy and/or as a drug carrier to target cells. This study demonstrates the potential of DNA-AuNPs (prepared by mixing calf thymus DNA with HAuCl4 solution) as a radiosensitizer of human glioma cells that have cancer stem cell (CSC)-like properties, to reduce their survival. CSC-like U251MG-P1 cells and their parental glioblastoma U251MG cells are treated with a prepared DNA-AuNP colloid. The radiosensitivity of the resultant AuNP-associated cells are significantly enhanced. To reveal the mechanism by which survival is reduced, the generation of reactive oxygen species (ROS), apoptosis induction, or DNA damage in the cells is assayed using the fluorescent dye DCFDA, annexin V-FITC/PI, and foci formation of γ-H2AX, respectively. X-ray irradiation with administration of AuNPs overcomes the radioresistance of U251MG-P1 cells. It does not induce ROS generation or apoptosis in the cells but enhances the number of abnormal nuclei with abundant γ-H2AX foci, which is judged as cell death by mitotic catastrophe. The AuNP association with the cells effectively induces mitotic catastrophe in x-ray-irradiated CSC-like cells, implicating that DNA-AuNPs might be a promising tool to develop an efficient radiosensitizer against CSC.


Subject(s)
DNA/administration & dosage , Glioma/radiotherapy , Gold/administration & dosage , Metal Nanoparticles/administration & dosage , Neoplastic Stem Cells/drug effects , Radiation Tolerance/drug effects , Annexins/metabolism , Apoptosis/drug effects , Cell Line, Tumor , DNA Damage/drug effects , Fluorescent Dyes/administration & dosage , Glioblastoma/metabolism , Glioblastoma/radiotherapy , Glioma/metabolism , Histones/metabolism , Humans , Mitosis/drug effects , Neoplastic Stem Cells/metabolism , Reactive Oxygen Species/metabolism
8.
Exp Ther Med ; 16(5): 4277-4282, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30344701

ABSTRACT

Administration of bone marrow-derived mesenchymal stem cells (MSCs) is a possible treatment for graft-versus-host disease (GVHD) following allogeneic hematopoietic stem cell transplantation and other inflammatory conditions. To address the mechanism of immunosuppression by MSCs, in particular those derived from adipose tissue (AMSCs), AMSCs were isolated from three different mouse strains, and the suppressive capacity of the AMSCs thus obtained to suppress interferon (IFN)-γ generation in mixed lymphocyte reaction cultures serving as an in vitro model of GVHD were assessed. It was revealed that the AMSCs had a potent capacity to suppress IFN-γ production regardless of their strain of origin and that such suppression was not associated with production of interleukin-10. In addition, the results demonstrated that ß2-microglobulin (ß2m)-deficient AMSCs from ß2m-/- mice were also potent suppressor cells, verifying the fact that the mechanism underlying the suppression by AMSCs is independent of major histocompatibility complex (MHC) class I expression or MHC compatibility. As AMSCs appear to have immunosuppressive properties, AMSCs may be a useful source of biological suppressor cells for the control of GVHD in humans.

9.
J Cell Biochem ; 119(9): 7350-7362, 2018 09.
Article in English | MEDLINE | ID: mdl-29768689

ABSTRACT

Cancer cells often secrete extracellular vesicles (EVs) that carry heat shock proteins (HSPs) with roles in tumor progression. Oral squamous cell carcinoma (OSCC) belongs to head and neck cancers (HNC) whose lymph-node-metastases often lead to poor prognosis. We have examined the EV proteome of OSCC cells and found abundant secretion of HSP90-enriched EVs in lymph-node-metastatic OSCC cells. Double knockdown of HSP90α and HSP90ß, using small interfering RNA significantly reduced the survival of the metastatic OSCC cells, although single knockdown of each HSP90 was ineffective. Elevated expression of these HSP90 family members was found to correlate with poor prognosis of HNC cases. Thus, elevated HSP90 levels in secreted vesicles are potential prognostic biomarkers and therapeutic targets in metastatic OSCC.


Subject(s)
Carcinoma, Squamous Cell/pathology , Extracellular Vesicles/metabolism , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Lymphatic Metastasis/pathology , Mouth Neoplasms/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Survival , Epithelial Cell Adhesion Molecule/metabolism , Gene Expression , Gene Knockdown Techniques , Humans , Kaplan-Meier Estimate , Proteome/metabolism , RNA, Small Interfering/genetics
10.
Transl Oncol ; 11(3): 653-663, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29621663

ABSTRACT

Previously, we have succeeded in converting induced pluripotent stem cells (iPSCs) into cancer stem cells (CSCs) by treating the iPSCs with conditioned medium of Lewis lung carcinoma (LLC) cells. The converted CSCs, named miPS-LLCcm cells, exhibited the self-renewal, differentiation potential, and potential to form malignant tumors with metastasis. In this study, we further characterized miPS-LLCcm cells both in vivo and in vitro. The tumors formed by subcutaneous injection showed the structures with pathophysiological features consisting of undifferentiated and malignant phenotypes generally found in adenocarcinoma. Metastasis in the lung was also observed as nodule structures. Excising from the tumors, primary cultured cells from the tumor and the nodule showed self-renewal, differentiation potential as well as tumor forming ability, which are the essential characters of CSCs. We then characterized the epigenetic regulation occurring in the CSCs. By comparing the DNA methylation level of CG rich regions, the differentially methylated regions (DMRs) were evaluated in all stages of CSCs when compared with the parental iPSCs. In DMRs, hypomethylation was found superior to hypermethylation in the miPS-LLCcm cells and its derivatives. The hypo- and hypermethylated genes were used to nominate KEGG pathways related with CSC. As a result, several categories were defined in the KEGG pathways from which most related with cancers, significant and high expression of components was PI3K-AKT signaling pathway. Simultaneously, the AKT activation was also confirmed in the CSCs. The PI3K-Akt signaling pathway should be an important pathway for the CSCs established by the treatment with conditioned medium of LLC cells.

11.
Int J Mol Sci ; 19(3)2018 Feb 26.
Article in English | MEDLINE | ID: mdl-29495404

ABSTRACT

We recently have established a successful xenograft model of human glioblastoma cells by enriching hyaluronic acid-dependent spheroid-forming populations termed U251MG-P1 cells from U251MG cells. Since U251MG-P1 cells have been confirmed to express CD44 along with principal stemness marker genes, OCT3/4, SOX2, KLF4 and Nanog, this CD44 expressing population appeared to majorly consist of undifferentiated cells. Evaluating the sensitivity to anti-cancer agents, we found U251MG-P1 cells were sensitive to doxorubicin with IC50 at 200 nM. Although doxorubicin has serious side-effects, establishment of an efficient therapy targeting undifferentiated glioblastoma cell population is necessary. We previously designed a chlorotoxin peptide fused to human IgG Fc region without hinge sequence (M-CTX-Fc), which exhibited a stronger growth inhibitory effect on the glioblastoma cell line A172 than an original chlorotoxin peptide. Combining these results together, we designed M-CTX-Fc conjugated liposomes encapsulating doxorubicin and used U251MG-P1 cells as the target model in this study. The liposome modified with M-CTX-Fc was designed with a diameter of approximately 100-150 nm and showed high encapsulation efficiency, adequate loading capacity of anticancer drug, enhanced antitumor effects demonstrating increasing uptake into the cells in vitro; M-CTX-Fc-L-Dox shows great promise in its ability to suppress tumor growth in vivo and it could serve as a template for targeted delivery of other therapeutics.


Subject(s)
Doxorubicin/analogs & derivatives , Glioblastoma/genetics , Hyaluronan Receptors/genetics , Recombinant Fusion Proteins , Scorpion Venoms/pharmacology , Animals , Cell Line, Tumor , Cell Survival/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Doxorubicin/pharmacology , Female , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Hyaluronan Receptors/metabolism , Immunoglobulin Fc Fragments , Immunoglobulin G , Inhibitory Concentration 50 , Kruppel-Like Factor 4 , Matrix Metalloproteinase 2 , Mice , Polyethylene Glycols/pharmacology , Xenograft Model Antitumor Assays
12.
Oncotarget ; 8(58): 98405-98416, 2017 Nov 17.
Article in English | MEDLINE | ID: mdl-29228699

ABSTRACT

Adequate iron levels are essential for human health. However, iron overload can act as catalyst for the formation of free radicals, which may cause cancer. Cancer stem cells (CSCs), which maintain the hallmark stem cell characteristics of self-renewal and differentiation capacity, have been proposed as a driving force of tumorigenesis and metastases. In the present study, we investigated the role of iron in the proliferation and stemness of CSCs, using the miPS-LLCcm cell model. Although the anti-cancer agents fluorouracil and cisplatin suppressed the proliferation of miPS-LLCcm cells, these drugs did not alter the expression of stemness markers, including Nanog, SOX2, c-Myc, Oct3/4 and Klf4. In contrast, iron depletion by the iron chelators deferasirox and deferoxamine suppressed the proliferation of miPS-LLCcm cells and the expression of stemness markers. In an allograft model, deferasirox inhibited the growth of miPS-LLCcm implants, which was associated with decreased expression of Nanog and Sox2. Altogether, iron appears to be crucial for the proliferation and maintenance of stemness of CSCs, and iron depletion may be a novel therapeutic strategy to target CSCs.

13.
Nanomaterials (Basel) ; 7(10)2017 Sep 23.
Article in English | MEDLINE | ID: mdl-28946623

ABSTRACT

Taxanes including paclitaxel and docetaxel are effective anticancer agents preferably sufficient for liposomal drug delivery. However, the encapsulation of these drugs with effective amounts into conventional liposomes is difficult due to their high hydrophobicity. Therefore, an effective encapsulation strategy for liposomal taxanes has been eagerly anticipated. In this study, the mixture of polyethoxylated castor oil (Cremophor EL) and ethanol containing phosphate buffered saline termed as CEP was employed as a solvent of the inner hydrophilic core of liposomes where taxanes should be incorporated. Docetaxel-, paclitaxel-, or 7-oxacetylglycosylated paclitaxel-encapsulating liposomes were successfully prepared with almost 100% of encapsulation efficiency and 29.9, 15.4, or 29.1 mol% of loading efficiency, respectively. We then applied the docetaxel-encapsulating liposomes for targeted drug delivery. Docetaxel-encapsulating liposomes were successfully developed HER2-targeted drug delivery by coupling HER2-specific binding peptide on liposome surface. The HER2-targeting liposomes exhibited HER2-specific internalization and enhanced anticancer activity in vitro. Therefore, we propose the sophisticated preparation of liposomal taxanes using CEP as a promising formulation for effective cancer therapies.

14.
Sci Rep ; 7(1): 6838, 2017 07 28.
Article in English | MEDLINE | ID: mdl-28754894

ABSTRACT

Cancer-associated fibroblasts (CAFs) are one of the most prominent cell types in the stromal compartment of the tumor microenvironment. CAFs support multiple aspects of cancer progression, including tumor initiation, invasion, and metastasis. The heterogeneous nature of the stromal microenvironment is attributed to the multiple sources from which the cells in this compartment originate. The present study provides the first evidence that cancer stem cells (CSCs) are one of the key sources of CAFs in the tumor niche. We generated CSC-like cells by treating mouse induced pluripotent stem cells with conditioned medium from breast cancer cell lines. The resulting cell population expressed both CSC and pluripotency markers, and the sphere-forming CSC-like cells formed subcutaneous tumors in nude mice. Intriguingly, these CSC-like cells always formed heterogeneous populations surrounded by myofibroblast-like cells. Based on this observation, we hypothesized that CSCs could be the source of the CAFs that support tumor maintenance and survival. To address this hypothesis, we induced the differentiation of spheres and purified the myofibroblast-like cells. The resulting cells exhibited a CAF-like phenotype, suggesting that they had differentiated into the subpopulations of cells that support CSC self-renewal. These findings provide novel insights into the dynamic interplay between various microenvironmental factors and CAFs in the CSC niche.


Subject(s)
Fibroblasts/cytology , Neoplastic Stem Cells/cytology , Tumor Microenvironment , Animals , Cell Differentiation , Cell Line, Tumor , Cells, Cultured , Female , Humans , Induced Pluripotent Stem Cells/cytology , Mice , Mice, Inbred BALB C , Mice, Nude
15.
Biomed Pharmacother ; 85: 549-555, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27889230

ABSTRACT

Lung cancer is one of the major causes of cancer-related mortality worldwide, and non-small-cell lung cancer is the most common form of lung cancer. Several studies had shown that thalidomide has potential for prevention and therapy of cancer. Therefore, the current study aimed to investigate the antitumor effects of two novel thalidomide analogs in human lung cancer A549 cells. The antiproliferative, antimigratory, and apoptotic effects in A549 cells induced by thalidomide analogs were examined. In addition, their effects on the expression of mRNAs encoding vascular endothelial growth factor165 (VEGF165) and matrix metalloproteinase-2 (MMP-2) were evaluated. Their influence on the tumor volume in nude mice was also determined. Results revealed that thalidomide analogs exhibited antiproliferative, antimigratory, and apoptotic activities with more pronounced effect than thalidomide drug. Furthermore, analogs 1 and 2 suppressed the expression levels of VEGF165 by 42% and 53.2% and those of MMP-2 by 45% and 52%, respectively. Thalidomide analogs 1 and 2 also reduced the tumor volume by 30.11% and 53.52%, respectively. Therefore, this study provides evidence that thalidomide analogs may serve as a new therapeutic option for treating lung cancer.


Subject(s)
Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase Inhibitors/pharmacology , Thalidomide/analogs & derivatives , Thalidomide/pharmacology , Vascular Endothelial Growth Factor A/antagonists & inhibitors , A549 Cells , Adenocarcinoma/drug therapy , Animals , Apoptosis/drug effects , Cell Movement/drug effects , Cell Survival/drug effects , Female , Gene Expression Regulation, Enzymologic/drug effects , Humans , Lung Neoplasms/drug therapy , Matrix Metalloproteinase 2/genetics , Mice , Mice, Nude , Neoplasms, Experimental/drug therapy , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
16.
Am J Cancer Res ; 6(9): 1906-1921, 2016.
Article in English | MEDLINE | ID: mdl-27725898

ABSTRACT

To grow beyond a size of approximately 1-2 mm3, tumor cells activate many processes to develop blood vasculature. Growing evidences indicate that the formation of the tumor vascular network is very complex, and is not restricted to angiogenesis. Cancer cell-derived tumor vasculatures have been recently described. Among them, endothelial differentiation of tumor cells have been directly related to cancer stem cells, which are cells within a tumor that possess the capacity to self-renew, and to exhibit multipotential heterogeneous lineages of cancer cells. Vasculogenic mimicry has been described to be formed by cancer cells expressing stemness markers. Thus, cancer stem cells have been proposed to contribute to vasculogenic mimicry, though its relation is yet to be clarified. Here, we analyzed the tumor vasculature by using a model of mouse cancer stem cells, miPS-LLCcm cells, which we have previously established from mouse induced pluripotent stem cells and we introduced the DsRed gene in miPS-LLCcm to trace them in vivo. Various features of vasculature were evaluated in ovo, in vitro, and in vivo. The tumors formed in allograft nude mice exhibited angiogenesis in chick chorioallantoic membrane assay. In those tumors, along with penetrated host endothelial vessels, we detected endothelial differentiation from cancer stem cells and formation of vasculogenic mimicry. The angiogenic factors such as VEGF-A and FGF2 were expressed predominantly in the cancer stem cells subpopulation of miPS-LLCcm cells. Our results suggested that cancer stem cells play key roles in not only the recruitment of host endothelial vessels into tumor, but also in maturation of endothelial linage of cancer stem cell's progenies. Furthermore, the undifferentiated subpopulation of the miPS-LLCcm participates directly in the vasculogenic mimicry formation. Collectively, we show that miPS-LLCcm cells have advantages to further study tumor vasculature and to develop novel targeting strategies in the future.

17.
Cancer Inform ; 15: 163-78, 2016.
Article in English | MEDLINE | ID: mdl-27559294

ABSTRACT

We performed gene expression microarray analysis coupled with spherical self-organizing map (sSOM) for artificially developed cancer stem cells (CSCs). The CSCs were developed from human induced pluripotent stem cells (hiPSCs) with the conditioned media of cancer cell lines, whereas the CSCs were induced from primary cell culture of human cancer tissues with defined factors (OCT3/4, SOX2, and KLF4). These cells commonly expressed human embryonic stem cell (hESC)/hiPSC-specific genes (POU5F1, SOX2, NANOG, LIN28, and SALL4) at a level equivalent to those of control hiPSC 201B7. The sSOM with unsupervised method demonstrated that the CSCs could be divided into three groups based on their culture conditions and original cancer tissues. Furthermore, with supervised method, sSOM nominated TMED9, RNASE1, NGFR, ST3GAL1, TNS4, BTG2, SLC16A3, CD177, CES1, GDF15, STMN2, FAM20A, NPPB, CD99, MYL7, PRSS23, AHNAK, and LOC152573 genes commonly upregulating among the CSCs compared to hiPSC, suggesting the gene signature of the CSCs.

18.
Appl Biochem Biotechnol ; 180(8): 1559-1573, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27406037

ABSTRACT

Transplantation of hematopoietic stem and progenitor cells (HSCs) i.e., self-renewing cells that retain multipotentiality, is now a widely performed therapy for many hematopoietic diseases. However, these cells are present in low number and are subject to replicative senescence after extraction; thus, the acquisition of sufficient numbers of cells for transplantation requires donors able to provide repetitive blood samples and/or methods of expanding cell numbers without disturbing cell multipotentiality. Previous studies have shown that HSCs maintain their multipotentiality and self-renewal activity if TCF3 transcription function is blocked under B cell differentiating conditions. Taking advantage of this finding to devise a new approach to HSC expansion in vitro, we constructed an episomal expression vector that specifically targets and transiently represses the TCF3 gene. This consisted of a vector encoding a transcription activator-like effector (TALE) fused to a Krüppel-associated box (KRAB) repressor. We showed that this TALE-KRAB vector repressed expression of an exogenous reporter gene in HEK293 and COS-7 cell lines and, more importantly, efficiently repressed endogenous TCF3 in a human B lymphoma cell line. These findings suggest that this vector can be used to maintain multipotentiality in HSC being subjected to a long-term expansion regimen prior to transplantation.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Targeting , Repressor Proteins/metabolism , Transcription Activator-Like Effectors/metabolism , Animals , COS Cells , Chlorocebus aethiops , Gene Deletion , Genes, Reporter , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Luciferases/metabolism , Luminescent Proteins/metabolism , Plasmids/metabolism , Transfection , Red Fluorescent Protein
19.
Biomark Cancer ; 8: 17-23, 2016.
Article in English | MEDLINE | ID: mdl-26966393

ABSTRACT

To identify cell-specific markers, we designed a DNA microarray platform with oligonucleotide probes for human membrane-anchored proteins. Human glioma cell lines were analyzed using microarray and compared with normal and fetal brain tissues. For the microarray analysis, we employed a spherical self-organizing map, which is a clustering method suitable for the conversion of multidimensional data into two-dimensional data and displays the relationship on a spherical surface. Based on the gene expression profile, the cell surface characteristics were successfully mirrored onto the spherical surface, thereby distinguishing normal brain tissue from the disease model based on the strength of gene expression. The clustered glioma-specific genes were further analyzed by polymerase chain reaction procedure and immunocytochemical staining of glioma cells. Our platform and the following procedure were successfully demonstrated to categorize the genes coding for cell surface proteins that are specific to glioma cells. Our assessment demonstrates that a spherical self-organizing map is a valuable tool for distinguishing cell surface markers and can be employed in marker discovery studies for the treatment of cancer.

20.
J Microencapsul ; 33(2): 172-82, 2016.
Article in English | MEDLINE | ID: mdl-26885749

ABSTRACT

Docetaxel comprises one of the most effective anti-cancer drugs despite of serious side effects. Liposomes encapsulation is practically feasible to deliver the drug. However, due to the significant hydrophobicity, docetaxel will be integrated into the lipid bilayer resulting in poor encapsulation capacity. Here, we evaluated a remote loading strategy using a solubility gradient made between the two solvents for 7-glucosyloxyacetyldocetaxel, which has enhanced water solubility of docetaxel with a coupled glucose moiety. Therefore, 7-glucosyloxyacetyldocetaxel was more effectively encapsulated into liposomes with 71.0% of encapsulation efficiency than docetaxel. While 7-glucosyloxyacetyldocetaxel exhibited 90.9% of tubulin stabilisation activity of docetaxel, 7-glucosyloxyacetyldocetaxel encapsulated in liposomes significantly inhibited the growth of tumour in vivo with side effects less than unencapsulated drug. Collectively, the encapsulation of 7-glucosyloxyacetyldocetaxel into liposomes by remote loading under the solubility gradient is considered to be a promising application to prepare practical drug delivery system.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Taxoids/administration & dosage , Taxoids/pharmacokinetics , Acetylation , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Docetaxel , Drug Compounding/methods , Glycosylation , Humans , Liposomes/chemistry , Mice, Inbred BALB C , Mice, Nude , Neoplasms/drug therapy , Neoplasms/pathology , Solubility , Taxoids/chemistry , Taxoids/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...