Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Exp Neurol ; 376: 114771, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38580154

ABSTRACT

Parkinson's disease (PD) rodent models provide insight into the relationship between nigrostriatal dopamine (DA) signaling and locomotor function. Although toxin-based rat models produce frank nigrostriatal neuron loss and eventual motor decline characteristic of PD, the rapid nature of neuronal loss may not adequately translate premotor traits, such as cognitive decline. Unfortunately, rodent genetic PD models, like the Pink1 knockout (KO) rat, often fail to replicate the differential severity of striatal DA and tyrosine hydroxylase (TH) loss, and a bradykinetic phenotype, reminiscent of human PD. To elucidate this inconsistency, we evaluated aging as a progression factor in the timing of motor and non-motor cognitive impairments. Male PINK1 KO and age-matched wild type (WT) rats were evaluated in a longitudinal study from 3 to 16 months old in one cohort, and in a cross-sectional study of young adult (6-7 months) and aged (18-19 months) in another cohort. Young adult PINK1 KO rats exhibited hyperkinetic behavior associated with elevated DA and TH in the substantia nigra (SN), which decreased therein, but not striatum, in the aged KO rats. Additionally, norepinephrine levels decreased in aged KO rats in the prefrontal cortex (PFC), paired with a higher DA levels in young and aged KO. Although a younger age of onset characterizes familial forms of PD, our results underscore the critical need to consider age-related factors. Moreover, the results indicate that compensatory mechanisms may exist to preserve locomotor function, evidenced by increased DA in the SN early in the lifespan, in response to deficient PINK1 function, which declines with aging and the onset of motor decline.


Subject(s)
Aging , Corpus Striatum , Dopamine , Protein Kinases , Substantia Nigra , Tyrosine 3-Monooxygenase , Animals , Tyrosine 3-Monooxygenase/metabolism , Protein Kinases/genetics , Protein Kinases/deficiency , Protein Kinases/metabolism , Substantia Nigra/metabolism , Aging/genetics , Male , Rats , Dopamine/metabolism , Corpus Striatum/metabolism , Motor Activity/physiology , Motor Activity/genetics , Rats, Transgenic
2.
bioRxiv ; 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38352365

ABSTRACT

Parkinson's disease (PD) rodent models provide insight into the relationship between nigrostriatal dopamine (DA) signaling and locomotor function. Although toxin-based rat models produce frank nigrostriatal neuron loss and eventual motor decline characteristic of PD, the rapid nature of neuronal loss may not adequately translate premotor traits, such as cognitive decline. Unfortunately, rodent genetic PD models, like the Pink1 knockout (KO) rat, often fail to replicate the differential severity of striatal DA and tyrosine hydroxylase (TH) loss, and a bradykinetic phenotype, reminiscent of human PD. To elucidate this inconsistency, we evaluated aging as a progression factor in the timing of motor and non-motor cognitive impairments. Male PINK1 KO and age-matched wild type (WT) rats were evaluated in a longitudinal study from 3 to 16 months old in one cohort, and in a cross-sectional study of young adult (6-7 months) and aged (18-19 months) in another cohort. Young adult PINK1 KO rats exhibited hyperkinetic behavior associated with elevated DA and TH in the substantia nigra (SN), which decreased therein, but not striatum, in the aged KO rats. Additionally, norepinephrine levels decreased in aged KO rats in the prefrontal cortex (PFC), paired with a higher DA content in young and aged KO. Although a younger age of onset characterizes familial forms of PD, our results underscore the critical need to consider age-related factors. Moreover, the results indicate that compensatory mechanisms may exist to preserve locomotor function, evidenced by increased DA in the SN early in the lifespan, in response to deficient PINK1 function, which declines with aging and the onset of motor impairment.

3.
Exp Neurol ; 368: 114509, 2023 10.
Article in English | MEDLINE | ID: mdl-37634696

ABSTRACT

Compensatory mechanisms that augment dopamine (DA) signaling are thought to mitigate onset of hypokinesia prior to major loss of tyrosine hydroxylase (TH) in striatum that occurs in Parkinson's disease. However, the identity of such mechanisms remains elusive. In the present study, the rat nigrostriatal pathway was unilaterally-lesioned with 6-hydroxydopamine (6-OHDA) to determine whether differences in DA content, TH protein, TH phosphorylation, or D1 receptor expression in striatum or substantia nigra (SN) aligned with hypokinesia onset and severity at two time points. In striatum, DA and TH loss reached its maximum (>90%) 7 days after lesion induction. However, in SN, no DA loss occurred, despite ∼60% TH loss. Hypokinesia was established at 21 days post-lesion and maintained at 28 days. At this time, DA loss was ∼60% in the SN, but still of lesser magnitude than TH loss. At day 7 and 28, ser31 TH phosphorylation increased only in SN, corresponding to less DA versus TH protein loss. In contrast, ser40 TH phosphorylation was unaffected in either region. Despite DA loss in both regions at day 28, D1 receptor expression increased only in lesioned SN. These results support the concept that augmented components of DA signaling in the SN, through increased ser31 TH phosphorylation and D1 receptor expression, contribute as compensatory mechanisms against progressive nigrostriatal neuron and TH protein loss, and may mitigate hypokinesia severity.


Subject(s)
Hypokinesia , Tyrosine 3-Monooxygenase , Animals , Rats , Phosphorylation , Dopamine , Neurons , Oxidopamine/toxicity , Substantia Nigra
4.
bioRxiv ; 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37502851

ABSTRACT

Background: Alleviation of motor impairment by aerobic exercise (AE) in Parkinson's disease (PD) points to a CNS response that could be targeted by therapeutic approaches, but recovery of striatal dopamine (DA) or tyrosine hydroxylase (TH) has been inconsistent in rodent studies. Objective: To increase translation of AE, 3 components were implemented into AE design to determine if recovery of established motor impairment, concomitant with >80% striatal DA and TH loss, was possible. We also evaluated if serum levels of neurofilament light (NfL) and glial fibrillary acidic protein (GFAP), blood-based biomarkers of disease severity in human PD, were affected. Methods: We used a 6-OHDA hemiparkinson rat model featuring progressive nigrostriatal neuron loss over 28 days, with impaired forelimb use 7 days post-lesion, and hypokinesia onset 21 days post-lesion. After establishing forelimb use deficits, moderate intensity AE began 1-3 days later, 3x per week, for 40 min/session. Motor assessments were conducted weekly for 3 wks, followed by determination of striatal DA, TH protein and mRNA, and NfL and GFAP serum levels. Results: Seven days after 6-OHDA lesion, recovery of depolarization-stimulated extracellular DA and DA tissue content was <10%, representing severity of DA loss in human PD, concomitant with 50% reduction in forelimb use. Despite severe DA loss, recovery of forelimb use deficits and alleviation of hypokinesia progression began after 2 weeks of AE and was maintained. Increased NfLand GFAP levels from lesion were reduced by AE. Despite these AE-driven changes, striatal DA tissue and TH protein levels were unaffected. Conclusions: This proof-of-concept study shows AE, using exercise parameters within the capabilities most PD patients, promotes recovery of established motor deficits in a rodent PD model, concomitant with reduced levels of blood-based biomarkers associated with PD severity, without commensurate increase in striatal DA or TH protein.

5.
Exp Neurol ; 366: 114435, 2023 08.
Article in English | MEDLINE | ID: mdl-37178997

ABSTRACT

Although glial cell line-derived neurotrophic factor (GDNF) showed efficacy in preclinical and early clinical studies to alleviate parkinsonian signs in Parkinson's disease (PD), later trials did not meet primary endpoints, giving pause to consider further investigation. While GDNF dose and delivery methods may have contributed to diminished efficacy, one crucial aspect of these clinical studies is that GDNF treatment began ∼8 years after PD diagnosis; a time point representing several years after near 100% depletion of nigrostriatal dopamine markers in striatum and at least 50% in substantia nigra (SN), which represents a time point of initiating GDNF treatment later than reported in some preclinical studies. With nigrostriatal terminal loss exceeding 70% at PD diagnosis, we utilized hemiparkinsonian rats to determine if expression of GDNF family receptor, GFR-α1, and receptor tyrosine kinase, RET, differed between striatum and SN at 1 and 4 weeks following a 6-hydroxydopamine (6-OHDA) hemilesion. Whereas GDNF expression changed minimally, GFR-α1 expression decreased progressively in striatum and in tyrosine hydroxylase positive (TH+) cells in SN, correlating with reduced TH cell number. However, in nigral astrocytes, GFR-α1 expression increased. RET expression decreased maximally in striatum by 1 week, whereas in the SN, a transient bilateral increase occurred, returning to control levels by 4 weeks. Expression of brain-derived neurotrophic factor (BDNF) or its receptor, TrkB, were unchanged throughout lesion progression. Together, these results reveal that differential GFR-α1 and RET expression between the striatum and SN, and cell-specific differences in GFR-α1 expression in SN, occur during nigrostriatal neuron loss. Targeting loss of GDNF receptors thus appears critical to enhance GDNF therapeutic efficacy against nigrostriatal neuron loss. SIGNIFICANCE STATEMENT: Although preclinical evidence supports that GDNF provides neuroprotection and improves locomotor function in preclinical studies, there is uncertainty if it can alleviate motor impairment in Parkinson's disease patients. Using the established 6-OHDA hemiparkinsonian rat model, we determined whether expression of its cognate receptors, GFR-α1 and RET, were differentially affected between striatum and substantia nigra in a timeline study. In striatum, there was early and significant loss of RET, but a gradual, progressive loss of GFR-α1. In contrast, RET transiently increased in lesioned substantia nigra, but GFR-α1 progressively decreased only in nigrostriatal neurons and correlated with TH cell loss. Our results indicate that direct availability of GFR-α1 may be a critical element that determines GDNF efficacy following striatal delivery.


Subject(s)
Parkinson Disease , Animals , Rats , Corpus Striatum/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Oxidopamine/toxicity , Parkinson Disease/metabolism , Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase/metabolism
6.
bioRxiv ; 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36909534

ABSTRACT

Although glial cell line-derived neurotrophic factor (GDNF) showed efficacy in preclinical and early clinical studies to alleviate parkinsonian signs in Parkinson's disease (PD), later trials did not meet primary endpoints, giving pause to consider further investigation. While GDNF dose and delivery methods may have contributed to diminished efficacy, one crucial aspect of these clinical studies is that GDNF treatment across all studies began ∼8 years after PD diagnosis; a time point representing several years after near 100% depletion of nigrostriatal dopamine markers in striatum and at least 50% in substantia nigra (SN), and is later than the timing of GDNF treatment in preclinical studies. With nigrostriatal terminal loss exceeding 70% at PD diagnosis, we utilized hemi-parkinsonian rats to determine if expression of GDNF family receptor, GFR-α1, and receptor tyrosine kinase, RET, differed between striatum and SN at 1 and 4 weeks following a 6-hydroxydopamine (6-OHDA) lesion. Whereas GDNF expression changed minimally, GFR-α1 expression decreased progressively in striatum and in tyrosine hydroxylase positive (TH+) cells in SN, correlating with reduced TH cell number. However, in nigral astrocytes, GFR-α1 expression increased. RET expression decreased maximally in striatum by 1 week, whereas in the SN, a transient bilateral increase occurred that returned to control levels by 4 weeks. Expression of brain-derived neurotrophic factor (BDNF) or its receptor, TrkB, were unchanged throughout lesion progression. Together, these results reveal that differential GFR-α1 and RET expression between the striatum and SN, and cell-specific differences in GFR-α1 expression in SN, occur during nigrostriatal neuron loss. Targeting loss of GDNF receptors appears critical to enhance GDNF therapeutic efficacy against nigrostriatal neuron loss. Significance Statement: Although preclinical evidence supports that GDNF provides neuroprotection and improves locomotor function in preclinical studies, clinical data supporting its efficacy to alleviate motor impairment in Parkinson's disease patients remains uncertain. Using the established 6-OHDA hemi-parkinsonian rat model, we determined whether expression of its cognate receptors, GFR-α1 and RET, were differentially affected between striatum and substantia nigra in a timeline study. In striatum, there was early and significant loss of RET, but a gradual, progressive loss of GFR-α1. In contrast, RET transiently increased in lesioned substantia nigra, but GFR-α1 progressively decreased only in nigrostriatal neurons and correlated with TH cell loss. Our results indicate that direct availability of GFR-α1 may be a critical element that determines GDNF efficacy following striatal delivery. Highlights: GDNF expression was minimally affected by nigrostriatal lesionGDNF family receptor, GFR-α1, progressively decreased in striatum and in TH neurons in SN.GFR-α1 expression decreased along with TH neurons as lesion progressedGFR-α1 increased bilaterally in GFAP+ cells suggesting an inherent response to offset TH neuron lossRET expression was severely reduced in striatum, whereas it increased in SN early after lesion induction.

7.
Geroscience ; 45(1): 45-63, 2023 02.
Article in English | MEDLINE | ID: mdl-35635679

ABSTRACT

Identifying neurobiological mechanisms of aging-related parkinsonism, and lifestyle interventions that mitigate them, remain critical knowledge gaps. No aging study, from rodent to human, has reported loss of any dopamine (DA) signaling marker near the magnitude associated with onset of parkinsonian signs in Parkinson's disease (PD). However, in substantia nigra (SN), similar loss of DA signaling markers in PD or aging coincide with parkinsonian signs. Alleviation of these parkinsonian signs may be possible by interventions such as calorie restriction (CR), which augment DA signaling markers like tyrosine hydroxylase (TH) expression in the SN, but not striatum. Here, we interrogated respective contributions of nigral and striatal DA mechanisms to aging-related parkinsonian signs in aging (18 months old) rats in two studies: by the imposition of CR for 6 months, and inhibition of DA uptake within the SN or striatum by cannula-directed infusion of nomifensine. Parkinsonian signs were mitigated within 12 weeks after CR and maintained until 24 months old, commensurate with increased D1 receptor expression in the SN alone, and increased GDNF family receptor, GFR-α1, in the striatum, suggesting increased GDNF signaling. Nomifensine infusion into the SN or striatum selectively increased extracellular DA. However, only nigral infusion increased locomotor activity. These results indicate mechanisms that increase components of DA signaling in the SN alone mitigate parkinsonian signs in aging, and are modifiable by interventions, like CR, to offset parkinsonian signs, even at advanced age. Moreover, these results give evidence that changes in nigral DA signaling may modulate some parameters of locomotor activity autonomously from striatal DA signaling.


Subject(s)
Dopamine , Parkinson Disease , Humans , Rats , Animals , Dopamine/metabolism , Rats, Inbred F344 , Caloric Restriction , Nomifensine/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Substantia Nigra/metabolism
8.
J Parkinsons Dis ; 12(6): 1897-1915, 2022.
Article in English | MEDLINE | ID: mdl-35754287

ABSTRACT

BACKGROUND: Rodent Parkinson's disease (PD) models are valuable to interrogate neurobiological mechanisms of exercise that mitigate motor impairment. Translating these mechanisms to human PD must account for physical capabilities of the patient. OBJECTIVE: To establish cardiovascular parameters as a common metric for cross-species translation of aerobic exercise impact. METHOD: We evaluated aerobic exercise impact on heart rate (HR) in 21 early-stage PD subjects (Hoehn Yahr ≤1.5) exercising in non-contact boxing training for ≥3 months, ≥3x/week. In 4-month-old Pink1 knockout (KO) rats exercising in a progressively-increased treadmill speed regimen, we determined a specific treadmill speed that increased HR to an extent similar in human subjects. RESULTS: After completing aerobic exercise for ∼30 min, PD subjects had increased HR∼35% above baseline (∼63% maximum HR). Motor and cognitive test results indicated the exercising subjects completed the timed up and go (TUG) and trail-making test (TMT-A) in significantly less time versus exercise-naïve PD subjects. In KO and age-matched wild-type (WT) rats, treadmill speeds of 8-10 m/min increased HR up to 25% above baseline (∼67% maximum HR), with no further increases up to 16 m/min. Exercised KO, but not WT, rats showed increased locomotor activity compared to an age-matched exercise-naïve cohort at 5 months old. CONCLUSION: These proof-of-concept results indicate HR is a cross-species translation parameter to evaluate aerobic exercise impact on specific motor or cognitive functions in human subjects and rat PD models. Moreover, a moderate intensity exercise regimen is within the physical abilities of early-stage PD patients and is therefore applicable for interrogating neurobiological mechanisms in rat PD models.


Subject(s)
Parkinson Disease , Animals , Exercise Test , Exercise Therapy/methods , Heart Rate , Humans , Infant , Parkinson Disease/genetics , Rats
10.
Front Aging Neurosci ; 13: 775355, 2021.
Article in English | MEDLINE | ID: mdl-34975456

ABSTRACT

Preservation of motor capabilities is vital to maintaining independent daily living throughout a person's lifespan and may mitigate aging-related parkinsonism, a progressive and prevalent motor impairment. Physically active lifestyles can mitigate aging-related motor impairment. However, the metrics of physical activity necessary for mitigating parkinsonian signs are not established. Consistent moderate intensity (~10 m/min) treadmill exercise can reverse aging-related parkinsonian signs by 20 weeks in a 2-week on, 2-week off, regimen in previously sedentary advanced middle-aged rats. In this study, we initiated treadmill exercise in sedentary 18-month-old male rats to address two questions: (1) if a rest period not longer than 1-week off exercise, with 15 exercise sessions per month, could attenuate parkinsonian signs within 2 months after exercise initiation, and the associated impact on heart rate (HR) and mean arterial pressure (MAP) and (2) if continuation of this regimen, up to 20 weeks, will be associated with continual prevention of parkinsonian signs. The intensity and frequency of treadmill exercise attenuated aging-related parkinsonian signs by 8 weeks and were maintained till 23 months old. The exercise regimen increased HR by 25% above baseline and gradually reduced pre-intervention MAP. Together, these studies indicate that a practicable frequency and intensity of exercise reduces parkinsonian sign severity commensurate with a modest increase in HR after exercise. These cardiovascular changes provide a baseline of metrics, easily measured in humans, for predictive validity that practicable exercise intensity and schedule can be initiated in previously sedentary older adults to delay the onset of aging-related parkinsonian signs.

11.
Stem Cell Res Ther ; 10(1): 311, 2019 10 24.
Article in English | MEDLINE | ID: mdl-31651375

ABSTRACT

BACKGROUND: The attainment of extensive neurological function recovery remains the key challenge for the treatment of traumatic brain injury (TBI). Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) has been shown to improve neurological function recovery after TBI. However, the survival of BMSCs after transplantation in early-stage TBI is limited, and much is unknown about the mechanisms mediating this neurological function recovery. Secretion of neurotrophic factors, including neurotrophin 3 (NT3), is one of the critical factors mediating BMSC neurological function recovery. Gene mutation of NT3 (NT3P75-2) has been shown to enhance the biological function of NT3 via the reduction of the activation of the P75 signal pathway. Thus, we investigated whether NT3P75-2 gene-modified BMSCs could enhance the survival of BMSCs and further improve neurological function recovery after TBI. METHODS: The ability of NT3P75-2 induction to improve cell growth rate of NSC-34 and PC12 cells in vitro was first determined. BMSCs were then infected with three different lentiviruses (green fluorescent protein (GFP), GFP-NT3, or GFP-NT3P75-2), which stably express GFP, GFP-NT3, or GFP-NT3P75-2. At 24 h post-TBI induction in mice, GFP-labeled BMSCs were locally transplanted into the lesion site. Immunofluorescence and histopathology were performed at 1, 3, and/or 7 days after transplantation to evaluate the survival of BMSCs as well as the lesion volume. A modified neurological severity scoring system and the rotarod test were chosen to evaluate the functional recovery of the mice. Cell growth rate, glial activation, and signaling pathway analyses were performed to determine the potential mechanisms of NT3P75-2 in functional recovery after TBI. RESULTS: Overall, NT3P75-2 improved cell growth rate of NSC-34 and PC12 cells in vitro. In addition, NT3P75-2 significantly improved the survival of transplanted BMSCs and neurological function recovery after TBI. Overexpression of NT3P75-2 led to a significant reduction in the activation of glial cells, brain water content, and brain lesion volume after TBI. This was associated with a reduced activation of the p75 neurotrophin receptor (P75NTR) and the c-Jun N-terminal kinase (JNK) signal pathway due to the low affinity of NT3P75-2 for the receptor. CONCLUSIONS: Taken together, our results demonstrate that administration of NT3P75-2 gene-modified BMSCs dramatically improves neurological function recovery after TBI by increasing the survival of BMSCs and ameliorating the inflammatory environment, providing a new promising treatment strategy for TBI.


Subject(s)
Bone and Bones/cytology , Brain Injuries, Traumatic/physiopathology , Brain Injuries, Traumatic/therapy , Mesenchymal Stem Cells/metabolism , Neurotrophin 3/genetics , Neurotrophin 3/therapeutic use , Recovery of Function , Animals , Brain Edema/etiology , Brain Edema/therapy , Brain Injuries, Traumatic/complications , Cell Line , Cell Proliferation , Cell Survival , Disease Models, Animal , Humans , Male , Mesenchymal Stem Cell Transplantation , Mice , Neuroglia/metabolism , Rats , Receptor, trkC/metabolism , Signal Transduction
12.
ACS Chem Neurosci ; 10(10): 4237-4249, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31538765

ABSTRACT

Glial cell line-derived neurotrophic factor (GDNF) improved motor function in Parkinson's disease (PD) patients in Phase I clinical trials, and these effects persisted months after GDNF discontinuation. Conversely, phase II clinical trials reported no significant effects on motor improvement vs placebo. The disease duration and the quantity, infusion approach, and duration of GDNF delivery may affect GDNF efficacy in PD treatment. However, identifying mechanisms activated by GDNF that affect nigrostriatal function may reveal additional avenues to partially restore nigrostriatal function. In PD and aging models, GDNF affects tyrosine hydroxylase (TH) expression or phosphorylation in substantia nigra (SN), long after a single GDNF injection in striatum. In aged rats, the GDNF family receptor, GFR-α1, increases TH expression and phosphorylation in SN. To determine if GFR-α1 could be a mechanistic link in long-term GDNF impact, we conducted two studies; first to determine if a single unilateral striatal delivery of GDNF affected GFR-α1 and TH over time (1 day, 1 week, and 4 weeks) in the striatum or SN in aged rats, and second, to determine if soluble GFR-α1 could mitigate TH loss following 6-hydroxydopamine (6-OHDA) lesion. In aged rats, GDNF bilaterally increased ser31 TH phosphorylation and GFR-α1 expression in SN at 1 day and 4 weeks after GDNF, respectively. In striatum, GFR-α1 expression decreased 1 week after GDNF, only on the GDNF-injected side. In 6-OHDA-lesioned rats, recombinant soluble GFR-α1 mitigated nigral, but not striatal, TH protein loss following 6-OHDA. Together, these results show GDNF has immediate and long-term impact on dopamine regulation in the SN, which includes a gradual increase in GFR-α1 expression that may sustain TH expression and dopamine function therein.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Oxidopamine/toxicity , Substantia Nigra/drug effects , Tyrosine 3-Monooxygenase/metabolism , Aging/metabolism , Animals , Dopamine/metabolism , Neurons/drug effects , Neurons/metabolism , Phosphorylation/drug effects , Rats , Substantia Nigra/metabolism
13.
Neuroscience ; 414: 8-27, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31220543

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease and there are no effective treatments that either slow or reverse the degeneration of the dopamine (DA) pathway. Using a 4-week progressive MPTP (1-methyl-1,2,3,6-tetrahydropyridine) neurotoxin model of PD, which is characterized by neuroinflammation, loss of nigrostriatal DA, and motor dysfunction, as seen in patients with PD, we tested whether post-MPTP treatment with glatiramer acetate (GA), an immunomodulatory drug, could reverse these changes. GA restored the grip dysfunction and gait abnormalities that were evident in the MPTP treated group. The reversal of the motor dysfunction was attributable to the substantial recovery in tyrosine hydroxylase (TH) protein expression in the striatum. Within the substantia nigra pars compacta, surface cell count analysis showed a slight increase in TH+ cells following GA treatment in the MPTP group, which was not statistically different from the vehicle (VEH) group. This was associated with the recovery of BDNF (brain derived neurotrophic factor) protein levels and a reduction in the microglial marker, IBA1, protein expression within the midbrain. Alpha synuclein (syn-1) levels within the midbrain and striatum were decreased following MPTP, while GA facilitated recovery to VEH levels in the striatum in the MPTP group. Although DA tissue analysis revealed no significant increase in striatal DA or 3,4-Dihydroxyphenylacetic acid levels (DOPAC) in the MPTP group treated with GA, DA turnover (DOPAC/DA) recovered back to VEH levels following GA treatment. GA treatment effectively reversed clinical (motor dysfunction) and pathology (TH, IBA1, BDNF expression) of PD in a murine model.


Subject(s)
Glatiramer Acetate/pharmacology , Immunologic Factors/pharmacology , Motor Activity/drug effects , Parkinsonian Disorders/drug therapy , Substantia Nigra/drug effects , Tyrosine 3-Monooxygenase/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Calcium-Binding Proteins/metabolism , Glatiramer Acetate/therapeutic use , Immunologic Factors/therapeutic use , Mice , Microfilament Proteins/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Parkinsonian Disorders/metabolism , Substantia Nigra/metabolism
14.
PLoS One ; 12(11): e0188538, 2017.
Article in English | MEDLINE | ID: mdl-29176896

ABSTRACT

Identifying lifestyle strategies and allied neurobiological mechanisms that reduce aging-related motor impairment is imperative, given the accelerating number of retirees and increased life expectancy. A physically active lifestyle prior to old age can reduce risk of debilitating motor decline. However, if exercise is initiated after motor decline has begun in the lifespan, it is unknown if aging itself may impose a limit on exercise efficacy to decelerate further aging-related motor decline. In Brown-Norway/Fischer 344 F1 hybrid (BNF) rats, locomotor activity begins to decrease in middle age (12-18 months). One mechanism of aging-related motor decline may be decreased expression of GDNF family receptor, GFRα-1, which is decreased in substantia nigra (SN) between 12 and 30 months old. Moderate exercise, beginning at 18 months old, increases nigral GFRα-1 and tyrosine hydroxylase (TH) expression within 2 months. In aged rats, replenishing aging-related loss of GFRα-1 in SN increases TH in SN alone and locomotor activity. A moderate exercise regimen was initiated in sedentary male BNF rats in a longitudinal study to evaluate if exercise could attenuate aging-related motor decline when initiated at two different ages in the latter half of the lifespan (18 or 24 months old). Motor decline was reversed in the 18-, but not 24-month-old, cohort. However, exercise efficacy in the 18-month-old group was reduced as the rats reached 27 months old. GFRα-1 expression was not increased in either cohort. These studies suggest exercise can decelerate motor decline when begun in the latter half of the lifespan, but its efficacy may be limited by age of initiation. Decreased plasticity of GFRα-1 expression following exercise may limit its efficacy to reverse motor decline.


Subject(s)
Aging/physiology , Motor Activity , Physical Conditioning, Animal , Animals , Body Weight , Dopamine/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Male , Rats , Rats, Inbred F344 , Substantia Nigra/enzymology , Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase/metabolism
15.
J Gerontol A Biol Sci Med Sci ; 73(1): 11-20, 2017 Dec 12.
Article in English | MEDLINE | ID: mdl-28637176

ABSTRACT

The escalating increase in retirees living beyond their eighth decade brings increased prevalence of aging-related impairments, including locomotor impairment (Parkinsonism) that may affect ~50% of those reaching age 80, but has no confirmed neurobiological mechanism. Lifestyle strategies that attenuate motor decline, and its allied mechanisms, must be identified. Aging studies report little to moderate loss of striatal dopamine (DA) or tyrosine hydroxylase (TH) in nigrostriatal terminals, in contrast to ~70%-80% loss associated with bradykinesia onset in Parkinson's disease. These studies evaluated the effect of ~6 months 30% calorie restriction (CR) on nigrostriatal DA regulation and aging-related locomotor decline initiated at 12 months of age in Brown-Norway Fischer F1 hybrid rats. The aging-related decline in locomotor activity was prevented by CR. However, striatal DA or TH expression was decreased in the CR group, but increased in substantia nigra versus the ad libitum group or 12-month-old cohort. In a 4- to 6-month-old cohort, pharmacological TH inhibition reduced striatal DA ~30%, comparable with decreases reported in aged rats and the CR group, without affecting locomotor activity. The dissociation of moderate striatal DA reduction from locomotor activity seen in both studies suggests that aging-related decreases in striatal DA are dissociated from locomotor decline.


Subject(s)
Caloric Restriction/methods , Corpus Striatum/metabolism , Dopamine/biosynthesis , Hypokinesia/metabolism , Locomotion/physiology , Parkinson Disease/prevention & control , Tyrosine 3-Monooxygenase/biosynthesis , Aging/metabolism , Animals , Blotting, Western , Disease Models, Animal , Follow-Up Studies , Hypokinesia/diet therapy , Hypokinesia/etiology , Male , Parkinson Disease/complications , Parkinson Disease/physiopathology , Phosphorylation , Rats , Rats, Inbred BN , Rats, Inbred F344 , Time Factors
16.
Mov Disord ; 32(11): 1547-1556, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28631864

ABSTRACT

BACKGROUND: Increased extracellular glutamate may contribute to l-dopa induced dyskinesia, a debilitating side effect faced by Parkinson's disease patients 5 to 10 years after l-dopa treatment. Therapeutic strategies targeting postsynaptic glutamate receptors to mitigate dyskinesia may have limited success because of significant side effects. Increasing glutamate uptake may be another approach to attenuate excess glutamatergic neurotransmission to mitigate dyskinesia severity or prolong the time prior to onset. Initiation of a ceftriaxone regimen at the time of nigrostriatal lesion can attenuate tyrosine hydroxylase loss in conjunction with increased glutamate uptake and glutamate transporter GLT-1 expression in a rat 6-hydroxydopamine model. In this article, we examined if a ceftriaxone regimen initiated 1 week after nigrostriatal lesion, but prior to l-dopa, could reduce l-dopa-induced dyskinesia in an established dyskinesia model. METHODS: Ceftriaxone (200 mg/kg, intraperitoneal, once daily, 7 consecutive days) was initiated 7 days post-6-hydroxydopamine lesion (days 7-13) and continued every other week (days 21-27, 35-39) until the end of the study (day 39 postlesion, 20 days of l-dopa). RESULTS: Ceftriaxone significantly reduced abnormal involuntary movements at 5 time points examined during chronic l-dopa treatment. Partial recovery of motor impairment from nigrostriatal lesion by l-dopa was unaffected by ceftriaxone. The ceftriaxone-treated l-dopa group had significantly increased striatal GLT-1 expression and glutamate uptake. Striatal tyrosine hydroxylase loss in this group was not significantly different when compared with the l-dopa alone group. CONCLUSIONS: Initiation of ceftriaxone after nigrostriatal lesion, but prior to and during l-dopa, may reduce dyskinesia severity without affecting l-dopa efficacy or the reduction of striatal tyrosine hydroxylase loss. © 2017 International Parkinson and Movement Disorder Society.


Subject(s)
Anti-Bacterial Agents/pharmacology , Ceftriaxone/pharmacology , Dopamine Agents/pharmacology , Dyskinesia, Drug-Induced/prevention & control , Excitatory Amino Acid Transporter 2/drug effects , Levodopa/pharmacology , Parkinson Disease/drug therapy , Animals , Anti-Bacterial Agents/administration & dosage , Ceftriaxone/administration & dosage , Disease Models, Animal , Dopamine Agents/administration & dosage , Dopamine Agents/adverse effects , Levodopa/administration & dosage , Levodopa/adverse effects , Male , Oxidopamine/pharmacology , Rats , Rats, Sprague-Dawley , Sympatholytics/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...