Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38138795

ABSTRACT

Additive manufacturing is increasingly being used in the production of parts of simple as well as complex shapes designed for various areas of industry. Prevention of errors in the production process is currently enabled using simulation tools that have the function of predicting possible errors and, at the same time, providing a set of information about the behaviour of the material in the metal additive manufacturing process. This paper discusses the simulation processes of 316L stainless steel produced using the laser powder bed fusion (L-PBF) process. Simulation of the printing process in the Simufact Additive simulation program made it possible to predict possible deformations and errors that could occur in the process of producing test samples. After analysing the final distortion already with compensation, the simulation values of maximum deviation -0.01 mm and minimum -0.13 mm were achieved.

2.
Materials (Basel) ; 16(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36984219

ABSTRACT

Aluminium alloy sheets cause many problems in sheet metal forming processes owing to their tendency to gall the surface of the tool. The paper presents a method for the determination of the kinematic friction coefficient of friction pairs. The determination of coefficient of friction (COF) in sheet metal forming requires specialised devices that 'simulate' friction conditions in specific areas of the formed sheet. In this article, the friction behaviour of aluminium alloy sheets was determined using the strip drawing test. The 1-mm-thick 6082 aluminium alloy sheets in T6 temper were used as test material. Different values for nominal pressures (4.38, 6.53, 8.13, 9.47, 10.63, and 11.69 MPa) and different sliding speeds (10 and 20 mm/min.) were considered. The change of friction conditions was also realised with several typical oils (hydraulic oil LHL 32, machine oil LAN 46 and engine oil SAE 5W-40 C3) commonly used in sheet metal forming operations. Friction tests were conducted at room temperature (24 °C). The main tribological mechanisms accompanying friction (adhesion, flattening, ploughing) were identified using a scanning electron microscope (SEM). The influence of the parameters of the friction process on the value of the COF was determined using artificial neural networks. The lowest value of the COF was recorded when lubricating the sheet metal surface with SAE 5W40 C3 engine oil, which is characterised as the most viscous of all tested lubricants. In dry friction conditions, a decreasing trend of the COF with increasing contact pressure was observed. In the whole range of applied contact pressures (4.38-11.69 MPa), the value of the COF during lubrication with SAE 5W40 C3 engine oil was between 0.14 and 0.17 for a sliding speed of 10 mm/min and between 0.13 and 0.16 for a sliding speed of 20 mm/min. The value of the COF during dry friction was between 0.23 and 0.28 for a sliding speed of 10 mm/min and between 0.22 and 0.26 for a sliding speed of 20 mm/min. SEM micrographs revealed that the main friction mechanism of 6082-T6 aluminium alloys sheet in contact with cold-work tool steel flattens surface asperities. The sensitivity analysis of the input parameters on the value of COF revealed that oil viscosity has the greatest impact on the value of the COF, followed by contact pressure and sliding speed.

3.
Materials (Basel) ; 15(6)2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35329751

ABSTRACT

To design a reliable forming process it is necessary to determine the mechanical and formability properties of the processed material, which are used as input parameters for forming simulations. High-strength steel is irreplaceable as a material for producing the deformation zones of current automobiles. This type of steel can be processed by conventional or unconventional forming methods. In the sheet forming process, the material is usually under uniaxial and biaxial stress. The bulge test is utilized for determination of biaxial stress-strain curves, which are often used as input material data for forming simulations. In this work, numerical simulations of bulge tests using TRIP RAK 40/70 steel were performed to study the impact of yield criteria and hardening laws on the accuracy of thickness prediction of the deformed steel sheet. Additionally, the impact of different solvers and integration schemes on the thickness prediction was tested. Furthermore, the impact of various degrees of deformation (various dome heights) on thickness prediction accuracy was evaluated. Numerical results showed a good correlation with experimental data. When the Hill90 yield criterion was used, the software with implicit solver was more accurate in predicting thickness compared to software with explicit integration scheme, in most cases. In addition, the thickness prediction of parts with lower deformation was more accurate compared to parts with greater deformation (higher dome height).

4.
Materials (Basel) ; 14(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209927

ABSTRACT

Single point incremental forming (SPIF) is an emerging process that is well-known to be suited for fabrication in small series production. The aim of this paper was to determine the optimal input parameters of the process in order to minimise the maximum of both the axial and the in-plane components of the forming force achieved during SPIF and the surface roughness of the internal surface of truncated-cone drawpieces. Grade 2 pure titanium sheets with a thickness of 0.4 mm were used as the test material. The central composite design and response surface method was used to determine the number of experiments required to study the responses through building a second-order quadratic model. Two directions of rotation of the forming tool were also considered. The input parameters were spindle speed, tool feed rate, and step size. The mathematical relations were defined using the response surfaces to predict the surface roughness of the drawpieces and the components of the forming force. It was found that feed rate has an insignificant role in both axial and in-plane forming forces, but step size is a major factor affecting axial and radial forming forces. However, step size directly affects the surface roughness on the inner surfaces of the drawpieces. Overall, the spindle speed -579 rpm (clockwise direction), tool feed 2000 mm/min, and step size 0.5 mm assure a minimisation of both force components and the surface roughness of drawpieces.

5.
Materials (Basel) ; 14(11)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072850

ABSTRACT

Clinching joints with an additional deformable rivet are modifications of the clinching joints. The clinch riveting (CR) joint is formed indirectly by a deformable rivet. The research included an analysis of CR joints' forming process for aluminum alloy sheets made of AW 6082 in T6 state condition and AW 5754 in three different state conditions: H11, H22 and H24. As a result of forming the joint for various sheet arrangements, the highest value of blocking the upper sheet in the lower sheet (tu) was obtained for the arrangements with two 5754-H24 aluminum alloy sheets. For such a large interlock parameter tu, the greatest thinning of lower sheet (tn) was obtained, which influenced the maximum tensile shear force and the joint failure mechanism. Based on the load-displacement diagrams obtained from the static shear test of lap joints, the total energy of failure and energy to achieve the maximum load capacity were calculated. The highest energy absorption to achieve the maximum load capacity, in the case of the same sheet materials, was obtained for the 5754-H11 aluminum alloy sheets. On the other hand, among the tested combinations, the highest value of energy absorption (for the joint maximum load capacity) was obtained for the sheet arrangement: top sheet AW 6082-T6 and the bottom AW 5754-H24. The highest value of the total energy up to fracture was obtained when the material of the top sheet was AW 6082-T6, and the bottom AW 5754-H22. For each sheet arrangement, a similar analysis of the joint strength parameters, interlock parameters and forming force were made.

6.
Polymers (Basel) ; 13(10)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064971

ABSTRACT

Biopolymers have been the most frequently studied class of materials due to their biodegradability, renewability, and sustainability. The main aim of the presented study was to evaluate degradability of the polymer material blend which was immersed in different solutions. The present study included the production of three different mixtures of polylactic acid and polyhydroxybutyrate, each with a different content of triacetin, which was used as a plasticiser. Applying 3D printing technology, two types of cylindrical specimen were produced, i.e., a solid and a porous specimen, and subjected to in vitro natural degradation. The biodegradation process ran for 195 days in three different solutions (saline, phosphate-buffered saline (PBS), and Hank's solution) in stable conditions of 37 °C and a pH of 7.4, while the specimens were kept in an orbital motion to simulate the flow of fluids. The goal was to identify the effects of a solution type, specimen shape and material composition on the biodegradation of the materials. The monitored parameters included changes in the solution quantity absorbed by the specimens; morphological changes in the specimen structure; and mechanical properties. They were measured by compressive testing using the Inspekt5 Table Blue testing device. The experiment revealed that specimen porosity affected the absorption of the solutions. The non-triacetin materials exhibited a higher mechanical resistance to compression than the materials containing a plasticiser. The final result of the experiment indicated that the plasticiser-free specimens exhibited higher values of solution absorption, no formation of block cracks or bubbles, and the pH values of the solutions in which these materials were immersed remained neutral for the entire experiment duration; furthermore, these materials did not reduce pH values down to the alkaline range, as was the case with the solutions with the plasticiser-containing materials. Generally, in applications where high mechanical resistance, earlier degradation, and more stable conditions are required, the use of non-plasticiser materials is recommended.

7.
Materials (Basel) ; 14(10)2021 May 15.
Article in English | MEDLINE | ID: mdl-34063434

ABSTRACT

This paper presents the application of multi-layer artificial neural networks (ANNs) and backward elimination regression for the prediction of values of the coefficient of friction (COF) of Ti-6Al-4V titanium alloy sheets. The results of the strip drawing test were used as data for the training networks. The strip drawing test was carried out under conditions of variable load and variable friction. Selected types of synthetic oils and environmentally friendly bio-degradable lubricants were used in the tests. ANN models were conducted for different network architectures and training methods: the quasi-Newton, Levenberg-Marquardt and back propagation. The values of root mean square (RMS) error and determination coefficient were adopted as evaluation criteria for ANNs. The minimum value of the RMS error for the training set (RMS = 0.0982) and the validation set (RMS = 0.1493) with the highest value of correlation coefficient (R2 = 0.91) was observed for a multi-layer network with eight neurons in the hidden layer trained using the quasi-Newton algorithm. As a result of the non-linear relationship between clamping and friction force, the value of the COF decreased with increasing load. The regression model F-value of 22.13 implies that the model with R2 = 0.6975 is significant. There is only a 0.01% chance that an F-value this large could occur due to noise.

SELECTION OF CITATIONS
SEARCH DETAIL
...