Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pflugers Arch ; 467(9): 1965-74, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25394886

ABSTRACT

Duchenne muscular dystrophy (DMD) is a human genetic disease characterized by fibrosis and severe muscle weakness. Currently, there is no effective treatment available to prevent progressive fibrosis in skeletal muscles. The serum- and glucocorticoid-inducible kinase SGK1 regulates a variety of physiological functions and participates in fibrosis stimulation. Here, we investigated whether SGK1 influences structure, function and/or fibrosis of the muscles from the mdx mouse, an animal model for DMD. As expected, mdx muscles showed the typical pathological features of muscular dystrophy including fiber size variations, central nuclei of muscle fibers, fibrosis in the diaphragm, and force reduction by 30-50 %. Muscles from sgk1 (-/-) mice were histologically overall intact and specific force was only slightly reduced compared to wild-type muscles. Surprisingly, soleus and diaphragm muscles of mdx/sgk1 (-/-) mice displayed forces close to wild-type levels. Most muscle fibers of the double mutants contained central nuclei, but fibrosis was not observed in any of the tested limb and diaphragm muscles. We conclude that the sole lack of SGK1 in mouse muscle does not lead to pronounced changes in muscle structure and function. However, dystrophin-deficient mdx muscle seems to benefit from SGK1 deficiency. SGK1 appears to be an important enzyme in the process of fibrotic remodeling and subsequent weakness of dystrophin-deficient mouse muscle.


Subject(s)
Immediate-Early Proteins/metabolism , Muscle Strength/physiology , Muscle, Skeletal/physiology , Muscular Dystrophy, Duchenne/pathology , Protein Serine-Threonine Kinases/metabolism , Animals , Disease Models, Animal , Fibrosis/metabolism , Immediate-Early Proteins/deficiency , Male , Mice , Mice, Inbred mdx , Mice, Knockout , Muscle, Skeletal/pathology , Protein Serine-Threonine Kinases/deficiency
2.
Pflugers Arch ; 461(1): 115-22, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20924600

ABSTRACT

Skeletal muscle contraction is basically controlled by Ca(2+) release and its reuptake into the sarcoplasmic reticulum. However, the long-term maintenance of muscle function requires an additional Ca(2+) influx from extracellular. Several mechanisms seem to contribute to the latter process, such as store-operated Ca(2+) entry, stretch-activated Ca(2+) influx and resting Ca(2+) influx. Candidate channels that may control Ca(2+) influx into muscle fibers are the STIM proteins, Orai, and the members of the transient receptor potential (TRP) family of cation channels. Here we show that TRPV4, an osmo-sensitive cation channel of the vanilloid subfamily of TRP channels is functionally expressed in mouse skeletal muscle. Western blot analysis showed the presence of TRPV4-specific bands at about 85 and 100 kDa in all tested muscles. The bands were absent when muscle proteins from TRPV4 deficient mice were analyzed. Using the manganese quench technique, we studied the resting influx of divalent cations into isolated wild-type muscle fibers. The specific TRPV4-channel activator 4α-phorbol-12,13-didecanoate (4α-PDD) stimulated resting influx by about 60% only in wild-type fibers. Electrical stimulation of soleus muscles did not reveal changes in isometric twitch contractions upon application of 4α-PDD, but tetanic contractions (at 120 Hz) were slightly increased by about 15%. When soleus muscles were stimulated with a fatigue protocol, muscle fatigue was significantly attenuated in the presence of 4α-PDD. The latter effect was not observed with muscles from TRPV4(-/-) mice. We conclude that TRPV4 is functionally expressed in mouse skeletal muscle and that TRPV4 activation modulates resting Ca(2+) influx and muscle fatigue.


Subject(s)
Muscle, Skeletal/metabolism , TRPV Cation Channels/biosynthesis , Animals , Calcium/metabolism , Electric Stimulation , Mice , Muscle Contraction/drug effects , Muscle Fatigue/drug effects , Muscle Fatigue/physiology , Muscle, Skeletal/drug effects , Phorbol Esters/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...