Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Top Med Chem ; 15(1): 65-72, 2015.
Article in English | MEDLINE | ID: mdl-25579575

ABSTRACT

Currently available antiviral drugs target the pol-encoded retroviral enzymes or integrases, in addition, inhibitors that target HIV-1 envelope-receptor interactions have also been recently approved. Recent understanding of the interactions between HIV-1 and host restriction factors has provided fresh avenues for development of novel antiviral drugs. For example, viral infectivity factor (Vif) now surfaced as an important therapeutic target in treatment of HIV infection. Vif suppresses A3G antiviral activity by targeting these proteins for polyubiquitination and proteasomal degradation. In the present study we analyzed the inhibitory potential of VEC5 and RN18 to inhibit the Vif-A3G interaction through protein- protein docking studies. Perusal of the study showed that, VEC5 and RN18 though inhibits the interaction however showed sub optimal potential. To overcome this set back, we identified 35 structural analogues of VEC5 and 18 analogues of RN18 through virtual screening approach. Analogue with PubCID 71624757 and 55358204 (AKOS006479723) -structurally akin to VEC5 and RN18 respectively showed much appreciable interaction than their respective parent compound. Evident from Vif-A3G; protein - protein docking studies, analogue PubCID 71624757 demonstrated 1.08 folds better inhibitory potential than its parent compound VEC5 while analogue PubCID 55358204 was 1.15 folds better than RN18. Further these analogues passed drug likeness filters and predicted to be non- toxic. We expect these analogues can be put to pharmacodynamic studies that can pave way the breakthrough in HIV therapeutics.


Subject(s)
Anti-HIV Agents/chemistry , Drug Discovery , HIV-1/chemistry , vif Gene Products, Human Immunodeficiency Virus/antagonists & inhibitors , Amino Acid Sequence , Binding Sites , High-Throughput Screening Assays , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Molecular Docking Simulation , Molecular Sequence Data , Protein Binding , Sequence Alignment , Static Electricity , Structure-Activity Relationship , User-Computer Interface , vif Gene Products, Human Immunodeficiency Virus/chemistry
2.
Bioinformation ; 10(10): 652-7, 2014.
Article in English | MEDLINE | ID: mdl-25489175

ABSTRACT

Montelukast and Zafirlukast are known leukotriene receptor antagonists prescribed in asthma treatment. However, these fall short as mono therapy and are frequently used in combination with inhaled glucocorticosteroids with or without long acting beta 2 agonists. Therefore, it is of interest to apply ligand and structure based virtual screening strategies to identify compounds akin to lead compounds Montelukast and Zafirlukast. Hence, compounds with structures having 95% similarity to these compounds were retrieved from NCBI׳s PubChem database. Compounds similar to lead were grouped and docked at the antagonist binding site of cysteinyl leukotriene receptor 1. This exercise identified compounds UNII 70RV86E50Q (Pub Cid 71587778) and Sure CN 9587085 (Pub Cid 19793614) with higher predicted binding compared to Montelukast and Zafirlukast. It is shown that the compound Sure CN 9587085 showed appreciable ligand receptor interaction compared to UNII 70RV86E50Q. Thus, the compound Sure CN 9587085 is selected as a potent antagonist to cysteinyl leukotriene receptor 1 for further consideration in vitro and in vivo validation.

SELECTION OF CITATIONS
SEARCH DETAIL
...