Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS Meas Sci Au ; 3(3): 143-161, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37360040

ABSTRACT

Around the world, lung cancer has long been the main factor in cancer-related deaths, with small-cell lung cancer (SCLC) being the deadliest form of lung cancer. Cancer cell-derived exosomes and exosomal miRNAs are considered promising biomarkers for diagnosing and prognosis of various diseases, including SCLC. Due to the rapidity of SCLC metastasis, early detection and diagnosis can offer better diagnosis and prognosis and therefore increase the patient's chances of survival. Over the past several years, many methodologies have been developed for analyzing non-SCLC-derived exosomes. However, minimal advances have been made in SCLC-derived exosome analysis methodologies. This Review discusses the epidemiology and prominent biomarkers of SCLC. Followed by a discussion about the effective strategies for isolating and detecting SCLC-derived exosomes and exosomal miRNA, highlighting the critical challenges and limitations of current methodologies. Finally, an overview is provided detailing future perspectives for exosome-based SCLC research.

2.
Small ; 19(15): e2205856, 2023 04.
Article in English | MEDLINE | ID: mdl-36631277

ABSTRACT

Liquid biopsy for the analysis of circulating cancer biomarkers (CBs) is a major advancement toward the early detection of cancer. In comparison to tissue biopsy techniques, liquid biopsy is relatively painless, offering multiple sampling opportunities across easily accessible bodily fluids such as blood, urine, and saliva. Liquid biopsy is also relatively inexpensive and simple, avoiding the requirement for specialized laboratory equipment or trained medical staff. Major advances in the field of liquid biopsy are attributed largely to developments in nanotechnology and microfabrication that enables the creation of highly precise chip-based platforms. These devices can overcome detection limitations of an individual biomarker by detecting multiple markers simultaneously on the same chip, or by featuring integrated and combined target separation techniques. In this review, the major advances in the field of portable and semi-portable micro, nano, and multiplexed platforms for CB detection for the early diagnosis of cancer are highlighted. A comparative discussion is also provided, noting merits and drawbacks of the platforms, especially in terms of portability. Finally, key challenges toward device portability and possible solutions, as well as discussing the future direction of the field are highlighted.


Subject(s)
Biomarkers, Tumor , Neoplasms , Humans , Nanomedicine , Liquid Biopsy/methods , Neoplasms/diagnosis , Nanotechnology
3.
Analyst ; 147(16): 3732-3740, 2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35833583

ABSTRACT

Exosomes are vesicles released by healthy and cancer cells into the extracellular matrix and bodily fluid. Cancer cell-derived exosomes have attracted much attention in early-stage detection and prognostication of treatment response. Thus, detecting exosomes is of great interest to biology and medicine. However, many conventional detection methods require high-cost equipment and centralized laboratory facilities, making diagnostics inaccessible in limited-resource settings. This study reports a proof-of-concept low-cost electrochemical paper-based analytical device to quantify both the total bulk and cancer cell-derived exosomes in cell culture media. The device employs a sandwich immune assay design, where exosomes are initially captured using the electrode-bound generic antibodies (i.e. CD9) and subsequently detected via ovarian cancer-specific CA125 antibodies. Our proposed device quantifies the total bulk exosome concentration with a detection limit of 9.3 × 107 exosomes per mL and ovarian cancer cell-derived exosomes with a detection limit of 7.1 × 108 exosomes per mL, with a relative standard deviation of <10% (n = 3). We suggest that this low-cost and simple electrochemical paper-based device could be an alternative tool for detecting disease-specific exosomes in biological samples with the potential to be further developed for point-of-care diagnosis.


Subject(s)
Exosomes , Ovarian Neoplasms , Antibodies , Electrodes , Female , Humans , Ovarian Neoplasms/diagnosis
4.
Biosensors (Basel) ; 12(5)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35624588

ABSTRACT

Long non-coding RNA Homeobox transcript antisense intergenic RNA (HOTAIR) is recognized as a participant in different processes of normal cell development. Aberrant overexpression of HOTAIR contributes to the initiation, growth, and invasiveness of ovarian cancer. Using the affinity interaction of target HOTAIR lncRNA sequences towards a screen-printed gold electrode (SPE-Au), herein we report on a novel, rapid and simple method to detect HOTAIR sequences. HOTAIR lncRNA sequences were first extracted from ovarian cancer cell lines and patient plasma samples and were magnetically captured and purified by complimentary capture probe-functionalized magnetic beads. Isolated target HOTAIR lncRNAs were directly adsorbed onto unmodified screen-printed gold electrodes (SPE-Au) for direct quantification with [Fe(CN)6]3-/4- redox couple. Our assay achieved a linear dynamic range of 100 nM and 1 pM for detecting pre-clinical model HOTAIR lncRNA samples (%RSD ≤ 5%, for n = 3) and was highly specific, showing clear distinction between HOTAIR lncRNA targets and non-specific miR-891 and miR-486 (100 nM) (%RSD ≤ 5%, for n = 3). The method was tested using ovarian cancer-specific cell lines (SKOV3 and OVCAR3) and mesothelial cell line (MeT-5A)-derived lncRNAs. The analytical performance of our method was validated using RT-qPCR. Finally, the method was tested using clinical samples from ovarian cancer patients and the resulting electrochemical responses show a clear distinction between the ovarian carcinoma and benign samples.


Subject(s)
MicroRNAs , Ovarian Neoplasms , RNA, Long Noncoding , Apoptosis , Cell Line, Tumor , Female , Genes, Homeobox , Gold , Humans , MicroRNAs/metabolism , Ovarian Neoplasms/diagnosis , RNA, Antisense , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
5.
Micromachines (Basel) ; 12(10)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34683202

ABSTRACT

This paper reports the design, development, and testing of a novel, yet simple and low-cost portable device for the rapid detection of SARS-CoV-2. The device performs loop mediated isothermal amplification (LAMP) and provides visually distinguishable images of the fluorescence emitted from the samples. The device utilises an aluminium block embedded with a cartridge heater for isothermal heating of the sample and a single-board computer and camera for fluorescence detection. The device demonstrates promising results within 20 min using clinically relevant starting concentrations of the synthetic template. Time-to-signal data for this device are considerably lower compared to standard quantitative Polymerase Chain Reaction(qPCR) machine (~10-20 min vs. >38 min) for 1 × 102 starting template copy number. The device in its fully optimized and characterized state can potentially be used as simple to operate, rapid, sensitive, and inexpensive platform for population screening as well as point-of-need severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) detection and patient management.

7.
Micromachines (Basel) ; 12(8)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34442532

ABSTRACT

The upregulated expression of tyrosine kinase AXL has been reported in several hematologic and solid human tumors, including gastric, breast, colorectal, prostate and ovarian cancers. Thus, AXL can potentially serve as a diagnostic and prognostic biomarker for various cancers. This paper reports the first ever loop-mediated isothermal amplification (LAMP) in a core-shell bead assay for the detection of AXL gene overexpression. We demonstrated simple instrumentation toward a point-of-care device to perform LAMP. This paper also reports the first ever use of core-shell beads as a microreactor to perform LAMP as an attempt to promote environmentally-friendly laboratory practices.

8.
Micromachines (Basel) ; 13(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35056213

ABSTRACT

Paper-based analytical devices have been substantially developed in recent decades. Many fabrication techniques for paper-based analytical devices have been demonstrated and reported. Herein, we report a relatively rapid, simple, and inexpensive method for fabricating paper-based analytical devices using parafilm hot pressing. We studied and optimized the effect of the key fabrication parameters, namely pressure, temperature, and pressing time. We discerned the optimal conditions, including a pressure of 3.8 MPa, temperature of 80 °C, and 3 min of pressing time, with the smallest hydrophobic barrier size (821 µm) being governed by laminate mask and parafilm dispersal from pressure and heat. Physical and biochemical properties were evaluated to substantiate the paper functionality for analytical devices. The wicking speed in the fabricated paper strips was slightly lower than that of non-processed paper, resulting from a reduced paper pore size after hot pressing. A colorimetric immunological assay was performed to demonstrate the protein binding capacity of the paper-based device after exposure to pressure and heat from the fabrication. Moreover, mixing in a two-dimensional paper-based device and flowing in a three-dimensional counterpart were thoroughly investigated, demonstrating that the paper devices from this fabrication process are potentially applicable as analytical devices for biomolecule detection. Fast, easy, and inexpensive parafilm hot press fabrication presents an opportunity for researchers to develop paper-based analytical devices in resource-limited environments.

9.
Anal Chim Acta ; 1132: 66-73, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-32980112

ABSTRACT

The discovery of large transcripts of long RNAs that have limited protein coding capacity, known as long non-coding RNAs (lncRNAs) present new concepts on RNA-mediated gene regulation. Increasing evidence suggests that large intervening ncRNAs regulate key pathways in cancer genesis and metastasis. Among the most characterized lncRNAs, homeobox (HOX) transcript antisense intergenic RNA (HOTAIR) acts as an oncogenic molecule in different cancer cells, and thus its expression level serves as a potential biomarker for diagnostic and therapeutic purposes in several human cancers, such as breast, prostate, liver and ovarian cancer. This paper reports a simple and sensitive sensor platform for the detection of HOTAIR. Extracted HOTAIR sequences from ovarian cancer cells and plasma samples derived from ovarian cancer patients were magnetically isolated and purified, followed by a sandwich hybridization event at a screen-printed gold electrode. This event was monitored by amperometry using the hydrogen peroxide/horseradish peroxidase/hydroquinone (H2O2/HRP/HQ) system. The catalytic enhancement of the amperometric signal enabled our assay to achieve a detection limit of 1.0 fM with a good inter-assay reproducibility (relative standard deviation (%RSD) = < 5.0%, n = 3). The method was used for the analysis of specific HOTAIR in cell line and a small cohort of plasma samples derived from patients with ovarian cancer. The analytical performance of the method was also demonstrated using a standard RT-qPCR. We believe that the proof of the concept assay demonstrated here could be a cost-effective alternative platform for screening cancer-related lncRNAs in routine clinical settings.


Subject(s)
Ovarian Neoplasms , RNA, Long Noncoding , Female , Gene Expression Regulation , Humans , Hydrogen Peroxide , RNA, Long Noncoding/genetics , Reproducibility of Results
10.
Analyst ; 145(23): 7680-7686, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-32975254

ABSTRACT

This work reports the development of a rapid, simple and inexpensive colorimetric paper-based assay for the detection of the severe acute respiratory symptom coronavirus 2 (SARS-CoV-2) humanized antibody. The paper device was prepared with lamination for easy sample handling and coated with the recombinant SARS-CoV-2 nucleocapsid antigen. This assay employed a colorimetric reaction, which is followed by horseradish peroxidase (HRP) conjugated detecting antibody in the presence of the 3,3',5,5'-tetramethylbenzidine (TMB) substrate. The colorimetric readout was evaluated and quantified for specificity and sensitivity. The characterization of this assay includes determining the linear regression curve, the limit of detection (LOD), the repeatability, and testing complex biological samples. We found that the LOD of the assay was 9.00 ng µL-1 (0.112 IU mL-1). The relative standard deviation was approximately 10% for a sample number of n = 3. We believe that our proof-of-concept assay has the potential to be developed for clinical screening of the SARS-CoV-2 humanized antibody as a tool to confirm infected active cases or to confirm SARS-CoV-2 immune cases during the process of vaccine development.


Subject(s)
Antibodies, Monoclonal, Humanized/blood , Antibodies, Viral/blood , COVID-19 Testing/methods , Colorimetry/methods , Enzyme-Linked Immunosorbent Assay/methods , Paper , SARS-CoV-2/immunology , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Viral/immunology , Armoracia/enzymology , Benzidines/chemistry , COVID-19/diagnosis , COVID-19 Testing/instrumentation , Colorimetry/instrumentation , Coronavirus Nucleocapsid Proteins/immunology , Enzyme-Linked Immunosorbent Assay/instrumentation , Horseradish Peroxidase/chemistry , Humans , Limit of Detection , Phosphoproteins/immunology , Proof of Concept Study , SARS-CoV-2/chemistry
11.
Cancers (Basel) ; 12(8)2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32785167

ABSTRACT

Long non-coding RNA HOX transcript antisense intergenic RNA (HOTAIR) is one of the promising biomarkers that has widely been used in determining the stages of many cancers, including ovarian cancer. In cancer diagnostics, the two key analytical challenges for detecting long non-coding RNA biomarkers are i) the low concentration levels (nM to fM range) in which they are found and ii) the analytical method where broad dynamic range is required (four to six orders of magnitude) due to the large variation in expression levels for different HOTAIR RNAs. To meet these challenges, we report on a biosensing platform for the visual (colorimetric) estimation and subsequent electrochemical quantification of ovarian-cancer-specific HOTAIR using a screen-printed gold electrode (SPE-Au). Our assay utilizes a two-step strategy that involves (i) magnetic isolation and purification of target HOTAIR sequences and (ii) subsequent detection of isolated sequences using a sandwich hybridization coupled with horseradish peroxidase (HRP)-catalyzed reaction of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide. The assay achieved a detection limit of 1.0 fM HOTAIR in spiked buffer samples with excellent reproducibility (% RSD ≤ 5%, for n = 3). It was successfully applied to detect HOTAIR in cancer cell lines and a panel of plasma samples derived from patients with ovarian cancer. The analytical performance of the method was validated with standard RT-qPCR. We believe that the proof of concept assay reported here may find potential use in routine clinical settings for the screening of cancer-related lncRNAs.

12.
Sci Rep ; 9(1): 17774, 2019 11 28.
Article in English | MEDLINE | ID: mdl-31780803

ABSTRACT

Bioprinting could spatially align various cells in high accuracy to simulate complex and highly organized native tissues. However, the uniform suspension and low concentration of cells in the bioink and subsequently printed construct usually results in weak cell-cell interaction and slow proliferation. Acoustic manipulation of biological cells during the extrusion-based bioprinting by a specific structural vibration mode was proposed and evaluated. Both C2C12 cells and human umbilical vein endothelial cells (HUVECs) could be effectively and quickly accumulated at the center of the cylindrical tube and consequently the middle of the printed construct with acoustic excitation at the driving frequency of 871 kHz. The full width at half maximum (FWHM) of cell distributions fitted with a Gaussian curve showed a significant reduction by about 2.2 fold in the printed construct. The viability, morphology, and differentiation of these cells were monitored and compared. C2C12 cells that were undergone the acoustic excitation had nuclei oriented densely within ±30° and decreased circularity index by 1.91 fold or significant cell elongation in the printing direction. In addition, the formation of the capillary-like structure in the HUVECs construct was found. The number of nodes, junctions, meshes, and branches of HUVECs on day 14 was significantly greater with acoustic excitation for the enhanced neovascularization. Altogether, the proposed acoustic technology can satisfactorily accumulate/pattern biological cells in the printed construct at high biocompatibility. The enhanced cell interaction and differentiation could subsequently improve the performance and functionalities of the engineered tissue samples.


Subject(s)
Bioprinting/methods , Acoustics , Animals , Cell Line , Cell Proliferation , Cell Survival , Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells , Humans , Mice , Myoblasts/cytology , Sound
13.
Int J Bioprint ; 4(1): 130, 2018.
Article in English | MEDLINE | ID: mdl-33102912

ABSTRACT

3D bioprinting becomes one of the popular approaches in the tissue engineering. In this emerging application, bioink is crucial for fabrication and functionality of constructed tissue. The use of cell spheroids as bioink can enhance the cell-cell interaction and subsequently the growth and differentiation of cells in the 3D printed construct with the minimum amount of other biomaterials. However, the conventional methods of preparing the cell spheroids have several limitations, such as long culture time, low-throughput, and medium modification. In this study, the formation of cell spheroids by SSAW was evaluated both numerically and experimentally in order to overcome the aforementioned limitations. The effects of excitation frequencies on the cell accumulation time, diameter of the formed cell spheroids, and subsequently, the growth and viability of cell spheroids in the culture medium over time were studied. Using the high-frequency (23.8 MHz) excitation, cell accumulation time to the pressure nodes could be reduced in comparison to that of the low-frequency (10.4 MHz) excitation, but in a smaller spheroid size. SSAW excitation at both frequencies does not affect the cell viability up to 7 days, > 90% with no statistical difference compared with the control group. In summary, SSAW can effectively prepare the cell spheroids as bioink for the future 3D bioprinting and various biotechnology applications (e.g., pharmaceutical drug screening and tissue engineering).

14.
Malar J ; 15(1): 358, 2016 07 12.
Article in English | MEDLINE | ID: mdl-27405995

ABSTRACT

The large number of deaths caused by malaria each year has increased interest in the development of effective malaria diagnoses. At the early-stage of infection, patients show non-specific symptoms or are asymptomatic, which makes it difficult for clinical diagnosis, especially in non-endemic areas. Alternative diagnostic methods that are timely and effective are required to identify infections, particularly in field settings. This article reviews conventional malaria diagnostic methods together with recently developed techniques for both malaria detection and infected erythrocyte separation. Although many alternative techniques have recently been proposed and studied, dielectrophoretic and magnetophoretic approaches are among the promising new techniques due to their high specificity for malaria parasite-infected red blood cells. The two approaches are discussed in detail, including their principles, types, applications and limitations. In addition, other recently developed techniques, such as cell deformability and morphology, are also overviewed in this article.


Subject(s)
Diagnostic Tests, Routine/methods , Erythrocytes/parasitology , Malaria/diagnosis , Plasmodium/isolation & purification , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...