Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 7864, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37188842

ABSTRACT

Inadequate knowledge on actual water availability, have raised social-economic conflicts that necessitate proper water management. This requires a better understanding of spatial-temporal trends of hydro-climatic variables as the main contributor to available water for use by sectors of economy. The study has analysed the trend of hydro-climatic variables viz. precipitation, temperature, evapotranspiration and river discharge. One downstream river gauge station was used for discharge data whereas a total of 9 daily observed and 29 grided satellite stations were used for climate data. Climate Hazards Group InfraRed Precipitation was used for precipitation data and Observational-Reanalysis Hybrid was used for Temperature data. Mann-Kendall Statistical test, Sen's slope estimator and ArcMap Inverse Distance Weighted Interpolation functionality were employed for temporal, magnitude and spatial trend analysis respectively. Results confirmed that, spatially, there are three main climatic zones in the study area viz. Udzungwa escarpment, Kilombero valley and Mahenge escarpment. On temporal analysis, with exception of the declining potential evapotranspiration trend, all other variables are on increase. This is with catchment rates of 2.08 mm/year, 0.05 °C/year, 0.02 °C/year, 498.6 m3/s/year and - 2.27 mm/year for precipitation, Tmax, Tmin, river discharge and PET respectively. Furthermore, rainfalls start late by a month (November) while temperatures picks earlier by September and October for Tmax and Tmin respectively. Water availability matches farming season. However, it is recommended to improve water resources management practices to limit flow impairment as expansions in sectors of economy are expected. Furthermore, landuse change analysis is recommended to ascertain actual trend and hence future water uptake.

2.
Plant Environ Interact ; 3(5): 193-202, 2022 Oct.
Article in English | MEDLINE | ID: mdl-37283991

ABSTRACT

The impacts of invasive alien plant species on native plants are generally well documented, but little is known about the mechanisms underlying their impacts on crop growth. A better understanding of immediate as well as legacy effects and of direct and indirect impacts of invasive alien plant species is essential for an improved management of invaded cropland. We investigated how Lantana camara impacts the growth of two subsistence crops (maize and cassava) through competition for resources, allelopathy and the indirect plant-plant interactions. We carried out two pot experiments using soils from invaded abandoned, invaded cultivated and non-invaded cultivated crop fields. In the first experiment maize and cassava were grown alone or together with L. camara and half of the pots were treated with activated carbon to suppress allelochemicals. The effect of the soil microbial community on L. camara-crop interactions was assessed in a second experiment using autoclaved soil with 5% of soil from the three soil types. We found that L. camara reduced the growth of maize by 29%, but cassava was not affected. We did not find evidence of allelopathic effects of L. camara. Inoculation of autoclaved soil with microorganisms from all soil types increased biomass of cassava and reduced the growth of maize. Because L. camara only caused impacts when growing simultaneously with maize, the results suggest that removal of L. camara will immediately mitigate its negative impacts on maize.

SELECTION OF CITATIONS
SEARCH DETAIL
...