Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Oncogenesis ; 11(1): 4, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35046388

ABSTRACT

Little is known about the role of microRNAs (miRNAs) in rewiring the metabolism within tumours and adjacent non-tumour bearing normal tissue and their potential in cancer therapy. This study aimed to investigate the relationship between deregulated miRNAs and metabolic components in murine duodenal polyps and non-polyp-derived organoids (mPOs and mNPOs) from a double-mutant ApcMinFbxw7∆G mouse model of intestinal/colorectal cancer (CRC). We analysed the expression of 373 miRNAs and 12 deregulated metabolic genes in mPOs and mNPOs. Our findings revealed miR-135b might target Spock1. Upregulation of SPOCK1 correlated with advanced stages of CRCs. Knockdown of miR-135b decreased the expression level of SPOCK1, glucose consumption and lactic secretion in CRC patient-derived tumours organoids (CRC tPDOs). Increased SPOCK1 induced by miR-135b overexpression promoted the Warburg effect and consequently antitumour effect of 5-fluorouracil. Thus, combination with miR-135b antisense nucleotides may represent a novel strategy to sensitise CRC to the chemo-reagent based treatment.

2.
Methods Mol Biol ; 2171: 257-269, 2020.
Article in English | MEDLINE | ID: mdl-32705648

ABSTRACT

Organoid culture faithfully reproduces the in vivo characteristics of the intestinal/colon epithelium and elucidates molecular mechanisms underlying the regulation of stem cell compartment that, if altered, may lead tumorigenesis. CRISPR-Cas9 based editing technology has provided promising opportunities for targeted loss-of-function mutations at chosen sites in the genome of eukaryotes. Herein, we demonstrate a CRISPR/Cas9-mediated mutagenesis-based screening method using murine intestinal organoids by investigating the phenotypical morphology of Cas9-expressing murine intestinal organoids. Murine intestinal crypts can be isolated and seeded into Matrigel and grown into stable organoid lines. Organoids subsequently transduced and selected to generate Cas9 expressing organoids. These organoids can be further transduced with the second lentiviruses expressing guide RNA (gRNA) (s) and screened for 8-10 days using bright-field and fluorescent microscopy to determine possible morphological or phenotypical abnormalities. Via phenotypical screening analysis, the candidate knockouts can be selected based on differential abnormal growth pattern vs their untransduced or lenti-GFP transduced controls. Further assessment of these knockout organoids can be done via phalloidin and propidium iodide (PI) staining, proliferation assay and qRT-PCR and also biochemical analysis. This CRISPR/Cas9 organoid mutagenesis-based screening method provides a reliable and rapid approach for investigating large numbers of genes with unknown/poorly identified biological functions. Knockout intestinal organoids can be associated with the key biological function of the gene(s) in development, homeostasis, disease progression, tumorigenesis, and drug screening, thereby reducing and potentially replacing animal models.


Subject(s)
Organoids/cytology , Organoids/metabolism , Animals , CRISPR-Cas Systems/genetics , CRISPR-Cas Systems/physiology , Cell Proliferation/genetics , Cell Proliferation/physiology , Gene Editing , Lentivirus/genetics , Mice , Mice, Transgenic , RNA, Guide, Kinetoplastida/genetics , Reverse Transcriptase Polymerase Chain Reaction
3.
Cancers (Basel) ; 12(1)2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31906201

ABSTRACT

Tumour-promoting inflammation is involved in colorectal cancer (CRC) development and therapeutic resistance. However, the antibiotics and antibacterial drugs and signalling that regulate the potency of anticancer treatment upon forced differentiation of cancer stem-like cell (CSC) are not fully defined yet. We screened an NIH-clinical collection of the small-molecule compound library of antibacterial/anti-inflammatory agents that identified potential candidate drugs targeting CRC-SC for differentiation. Selected compounds were validated in both in vitro organoids and ex vivo colon explant models for their differentiation induction, impediment on neoplastic cell growth, and to elucidate the mechanism of their anticancer activity. We initially focused on AM404, an anandamide uptake inhibitor. AM404 is a metabolite of acetaminophen with antibacterial activity, which showed high potential in preventing CRC-SC features, such as stemness/de-differentiation, migration and drug-resistance. Furthermore, AM404 suppressed the expression of FBXL5 E3-ligase, where AM404 sensitivity was mimicked by FBXL5-knockout. This study uncovers a new molecular mechanism for AM404-altering FBXL5 oncogene which mediates chemo-resistance and CRC invasion, thereby proposes to repurpose antibacterial AM404 as an anticancer agent.

SELECTION OF CITATIONS
SEARCH DETAIL
...