Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microscopy (Oxf) ; 63(6): 469-73, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25145647

ABSTRACT

A dual-axis 360° rotation specimen holder was developed for use in reconstructing the three-dimensional (3D) distribution of a magnetic field using a combination of electron holography and tomography. Pillar-shaped specimens are used to obtain accurate reconstruction without a missing angle. The holder's rotation rod can be turned >360°; the pillar is set ±45° to the azimuth for both x- and y-axis rotation. Two rotation series of holograms in individual axes are recorded for vector field tomography. The two vector components of the magnetic field are reconstructed directly from the two series of holograms, and the remaining component is calculated using Maxwell's equation, div B = 0. As a result, all 3D magnetic fields are reconstructed.

2.
Rapid Commun Mass Spectrom ; 28(12): 1376-80, 2014 Jun 30.
Article in English | MEDLINE | ID: mdl-24797949

ABSTRACT

RATIONALE: There is a need for more rapid methods for the detection of explosive particles. We have developed a novel real-time analysis technique for explosive particles that uses a cyclone particle concentrator. This technique can analyze sample surfaces for the presence of particles from explosives such as TNT and RDX within 3 s, which is much faster than is possible by conventional methods. METHODS: Particles are detached from the sample surface with air jet pulses, and then introduced into a cyclone particle concentrator with a high pumping speed of about 80 L/min. A vaporizer placed at the bottom of the cyclone particle concentrator immediately converts the particles into a vapor. The vapor is then ionized in the atmospheric pressure chemical ionization (APCI) source of a linear ion trap mass spectrometer. RESULTS: An online connection between the vaporizer and a mass spectrometer enables high-speed detection within a few seconds, compared with the conventional off-line heating method that takes more than 10 s to raise the temperature of a sample filter unit. Since the configuration enriched the number density of explosive particles by about 80 times compared with that without the concentrator, a sub-ng amount of TNT particles on a surface was detectable. CONCLUSIONS: The detection limit of our technique is comparable with that of an explosives trace detector using ion mobility spectrometry. The technique will be beneficial for trace detection in security applications, because it detects explosive particles on the surface more speedily than conventional methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...