Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Dev Growth Differ ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970357

ABSTRACT

Parkinson's disease is a neurological disorder characterized by reduced motility, depression and dementia. Guamanian parkinsonism dementia with amyotrophic sclerosis is a local case of Parkinson's disease reported in the Western Pacific Islands of Guam and Rota as well as in the Kii Peninsula of Japan. A previous genetic study has suggested that Guamanian parkinsonism is attributable to a variant of the TRPM7 gene, which encodes for melastatin-related transient receptor potential (TRP) ion channels. But the link between parkinsonism and the TRPM7 gene remains elusive. Previous studies have addressed that trpm7-deficient zebrafish embryos showed defects in pigmentation and touch-evoked motor response. In this study, we identified a new viable allele of trpm7 mutant causing an I756N amino acid substitution in the first transmembrane domain. Behavioral analyses revealed that trpm7 mutants showed compromised motility with their movement distance shorter than wild-type larvae. The velocity of the movement was significantly reduced in trpm7 mutants than in wild-type larvae. Along with a previous finding of reduced dopaminergic neurons in zebrafish trpm7 mutants, reduced motility of trpm7 mutants can suggest another similarity between trpm7 phenotypes and Parkinson's disease symptoms.

2.
Sci Rep ; 14(1): 7455, 2024 03 29.
Article in English | MEDLINE | ID: mdl-38548817

ABSTRACT

Inbred strains of organisms are genetically highly uniform and thus useful for life science research. We have previously reported the ongoing generation of the zebrafish IM strain from the India (IND) strain through full sib-pair mating for 16 generations. However, the IM fish laid a small number of offspring and had a short lifespan, implying the need for discreet care in breeding. Here, we report the subsequent establishment of IM strain as well as the generation of a new inbred zebrafish strain, Mishima-AB (M-AB). M-AB was derived from the *AB strain by full sib-pair mating for over 20 generations, which fulfills the general criterion for the establishment of an inbred strain. In contrast to the IM case, maintenance of the M-AB strain by sib-pair mating required almost no special handling. Genome sequencing of IM individuals from the 47th generation and M-AB individuals from the 27th generation revealed that SNP-based genomic heterogeneity across whole-genome nucleotides was 0.008% and 0.011%, respectively. These percentages were much lower than those of the parental IND (0.197%) and *AB (0.086%) strains. These results indicate that the genomes of these inbred strains were highly homogenous. We also demonstrated the successful microinjection of antisense morpholinos, CRISPR/Cas9, and foreign genes into M-AB embryos at the 1-cell stage. Overall, we report the establishment of a zebrafish inbred strain, M-AB, which is capable of regular breeding and genetic manipulation. This strain will be useful for the analysis of genetically susceptible phenotypes such as behaviors, microbiome features and drug susceptibility.


Subject(s)
Inbreeding , Zebrafish , Animals , Zebrafish/genetics , Genome , Chromosome Mapping , Phenotype
3.
Front Cell Dev Biol ; 12: 1340089, 2024.
Article in English | MEDLINE | ID: mdl-38385024

ABSTRACT

Electromagnetic fields (EMFs) have received widespread attention as effective, noninvasive, and safe therapies across a range of clinical applications for bone disorders. However, due to the various frequencies of devices, their effects on tissues/cells are vary, which has been a bottleneck in understanding the effects of EMFs on bone tissue. Here, we developed an in vivo model system using zebrafish scales to investigate the effects of extremely low-frequency EMFs (ELF-EMFs) on fracture healing. Exposure to 10 millitesla (mT) of ELF-EMFs at 60 Hz increased the number of both osteoblasts and osteoclasts in the fractured scale, whereas 3 or 30 mT did not. Gene expression analysis revealed that exposure to 10 mT ELF-EMFs upregulated wnt10b and Wnt target genes in the fractured scale. Moreover, ß-catenin expression was enhanced by ELF-EMFs predominantly at the fracture site of the zebrafish scale. Inhibition of Wnt/ß-catenin signaling by IWR-1-endo treatment reduced both osteoblasts and osteoclasts in the fractured scale exposed to ELF-EMFs. These results suggest that ELF-EMFs promote both osteoblast and osteoclast activity through activation of Wnt/ß-catenin signaling in fracture healing. Our data provide in vivo evidence that ELF-EMFs generated with a widely used commercial AC power supply have a facilitative effect on fracture healing.

4.
Life Sci Alliance ; 7(5)2024 May.
Article in English | MEDLINE | ID: mdl-38373797

ABSTRACT

Skeletal muscle development is a highly ordered process orchestrated transcriptionally by the myogenic regulatory factors. However, the downstream molecular mechanisms of myogenic regulatory factor functions in myogenesis are not fully understood. Here, we identified the RNA-binding protein Musashi2 (Msi2) as a myogenin target gene and a post-transcriptional regulator of myoblast differentiation. Msi2 knockdown in murine myoblasts blocked differentiation without affecting the expression of MyoD or myogenin. Msi2 overexpression was also sufficient to promote myoblast differentiation and myocyte fusion. Msi2 loss attenuated autophagosome formation via down-regulation of the autophagic protein MAPL1LC3/ATG8 (LC3) at the early phase of myoblast differentiation. Moreover, forced activation of autophagy effectively suppressed the differentiation defects incurred by Msi2 loss. Consistent with its functions in myoblasts in vitro, mice deficient for Msi2 exhibited smaller limb skeletal muscles, poorer exercise performance, and muscle fiber-type switching in vivo. Collectively, our study demonstrates that Msi2 is a novel regulator of mammalian myogenesis and establishes a new functional link between muscular development and autophagy regulation.


Subject(s)
Muscle Development , Muscle, Skeletal , Animals , Mice , Myogenin/genetics , Myogenin/metabolism , Muscle, Skeletal/metabolism , Muscle Development/genetics , Autophagy/genetics , RNA-Binding Proteins/genetics , Mammals/metabolism
5.
Dev Growth Differ ; 66(1): 43-55, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37779230

ABSTRACT

The freshwater planarian Dugesia japonica maintains an abundant heterogeneous cell population called neoblasts, which include adult pluripotent stem cells. Thus, it is an excellent model organism for stem cell and regeneration research. Recently, many single-cell RNA sequencing (scRNA-seq) databases of several model organisms, including other planarian species, have become publicly available; these are powerful and useful resources to search for gene expression in various tissues and cells. However, the only scRNA-seq dataset for D. japonica has been limited by the number of genes detected. Herein, we collected D. japonica cells, and conducted an scRNA-seq analysis. A novel, automatic, iterative cell clustering strategy produced a dataset of 3,404 cells, which could be classified into 63 cell types based on gene expression profiles. We introduced two examples for utilizing the scRNA-seq dataset in this study using D. japonica. First, the dataset provided results consistent with previous studies as well as novel functionally relevant insights, that is, the expression of DjMTA and DjP2X-A genes in neoblasts that give rise to differentiated cells. Second, we conducted an integrative analysis of the scRNA-seq dataset and time-course bulk RNA-seq of irradiated animals, demonstrating that the dataset can help interpret differentially expressed genes captured via bulk RNA-seq. Using the R package "Seurat" and GSE223927, researchers can easily access and utilize this dataset.


Subject(s)
Adult Stem Cells , Planarians , Pluripotent Stem Cells , Animals , Planarians/genetics , Planarians/metabolism , Transcriptome/genetics , Gene Expression Profiling
6.
J Med Genet ; 61(3): 239-243, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-37833059

ABSTRACT

DNA polymerase epsilon (Pol ε), a component of the core replisome, is involved in DNA replication. Although genetic defects of Pol ε have been reported to cause immunodeficiency syndromes, its role in haematopoiesis remains unknown. Here, we identified compound heterozygous variants (p.[Asp1131fs];[Thr1891del]) in POLE, encoding Pol ε catalytic subunit A (POLE1), in siblings with a syndromic form of severe congenital transfusion-dependent anaemia. In contrast to Diamond-Blackfan anaemia, marked reticulocytopenia or marked erythroid hypoplasia was not found. Their bone marrow aspirates during infancy revealed erythroid dysplasia with strongly positive TP53 in immunostaining. Repetitive examinations demonstrated trilineage myelodysplasia within 2 years from birth. They had short stature and facial dysmorphism. HEK293 cell-based expression experiments and analyses of patient-derived induced pluripotent stem cells (iPSCs) disclosed a reduced mRNA level of Asp1131fs-POLE1 and defective nuclear translocation of Thr1891del-POLE1. Analysis of iPSCs showed compensatory mRNA upregulation of the other replisome components and increase of the TP53 protein, both suggesting dysfunction of the replisome. We created Pole-knockout medaka fish and found that heterozygous fishes were viable, but with decreased RBCs. Our observations expand the phenotypic spectrum of the Pol ε defect in humans, additionally providing unique evidence linking Pol ε to haematopoiesis.


Subject(s)
DNA Polymerase II , DNA Replication , Animals , Humans , DNA Polymerase II/genetics , DNA Polymerase II/metabolism , HEK293 Cells , DNA Replication/genetics , Tumor Suppressor Protein p53/genetics , RNA, Messenger
7.
Life Sci Alliance ; 6(7)2023 07.
Article in English | MEDLINE | ID: mdl-37160311

ABSTRACT

The unfolded protein response is triggered in vertebrates by ubiquitously expressed IRE1α/ß (although IRE1ß is gut-specific in mice), PERK, and ATF6α/ß, transmembrane-type sensor proteins in the ER, to cope with ER stress, the accumulation of unfolded and misfolded proteins in the ER. Here, we burdened medaka fish, a vertebrate model organism, with ER stress persistently from fertilization by knocking out the AXER gene encoding an ATP/ADP exchanger in the ER membrane, leading to decreased ATP concentration-mediated impairment of the activity of Hsp70- and Hsp90-type molecular chaperones in the ER lumen. ER stress and apoptosis were evoked from 4 and 6 dpf, respectively, leading to the death of all AXER-KO medaka by 12 dpf because of heart failure (medaka hatch at 7 dpf). Importantly, constitutive activation of IRE1α signaling-but not ATF6α signaling-rescued this heart failure and allowed AXER-KO medaka to survive 3 d longer, likely because of XBP1-mediated transcriptional induction of ER-associated degradation components. Thus, activation of a specific pathway of the unfolded protein response can cure defects in a particular organ.


Subject(s)
Heart Failure , Oryzias , X-Box Binding Protein 1 , Animals , Adenosine Triphosphate , Endoribonucleases/genetics , Membrane Proteins , Protein Serine-Threonine Kinases/genetics , X-Box Binding Protein 1/genetics , Activating Transcription Factor 6
8.
Dev Growth Differ ; 65(4): 221-223, 2023 May.
Article in English | MEDLINE | ID: mdl-36961383

ABSTRACT

This is a meeting report of "The workshop of research and techniques using next-generation sequencing (NGS) for developmental biology 2022." About 20 researchers attended the workshop. We discuss their NGS studies and techniques.


Subject(s)
Developmental Biology , High-Throughput Nucleotide Sequencing , High-Throughput Nucleotide Sequencing/methods
9.
Plant Methods ; 18(1): 99, 2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35933383

ABSTRACT

BACKGROUND: Quantification of gene expression such as RNA-Seq is a popular approach to study various biological phenomena. Despite the development of RNA-Seq library preparation methods and sequencing platforms in the last decade, RNA extraction remains the most laborious and costly step in RNA-Seq of tissue samples of various organisms. Thus, it is still difficult to examine gene expression in thousands of samples. RESULTS: Here, we developed Direct-RT buffer in which homogenization of tissue samples and direct-lysate reverse transcription can be conducted without RNA purification. The DTT concentration in Direct-RT buffer prevented RNA degradation but not RT in the lysates of several plant tissues, yeast, and zebrafish larvae. Direct reverse transcription on these lysates in Direct-RT buffer produced comparable amounts of cDNA to those synthesized from purified RNA. To maximize the advantage of the Direct-RT buffer, we integrated Direct-RT and targeted RNA-Seq to develop a cost-effective, high-throughput quantification method for the expressions of hundreds of genes: DeLTa-Seq (Direct-Lysate reverse transcription and Targeted RNA-Seq). The DeLTa-Seq method could drastically improve the efficiency and accuracy of gene expression analysis. DeLTa-Seq analysis of 1056 samples revealed the temperature-dependent effects of jasmonic acid and salicylic acid in Arabidopsis thaliana. CONCLUSIONS: The DeLTa-Seq method can realize large-scale studies using thousands of animal, plant, and microorganism samples, such as chemical screening, field experiments, and studies focusing on individual variability. In addition, Direct-RT is also beneficial for gene expression analysis in small tissues from which it is difficult to purify enough RNA for the experiments.

10.
Methods Mol Biol ; 2509: 69-81, 2022.
Article in English | MEDLINE | ID: mdl-35796957

ABSTRACT

The freshwater planarian Dugesia japonica is a good in vivo model for studying the function of piwi genes in adult pluripotent stem cell (aPSC) due to their abundant aPSCs. Generally, PIWI family proteins encoded by piwi genes bind to small noncoding RNAs called piRNAs (PIWI-interacting piRNAs). The analysis of PIWI-piRNA complexes in the planarian is useful for revealing the functions of piwi genes in the aPSC system. In this chapter, we present an immunoprecipitation protocol for PIWI-piRNA complexes from whole planarians.


Subject(s)
Adult Stem Cells , Planarians , Pluripotent Stem Cells , Adult Stem Cells/metabolism , Animals , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Immunoprecipitation , Planarians/genetics , Planarians/metabolism , Pluripotent Stem Cells/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
11.
Plant Cell Environ ; 45(8): 2410-2427, 2022 08.
Article in English | MEDLINE | ID: mdl-35610174

ABSTRACT

The differences between plants grown in field and in controlled environments have long been recognized. However, few studies have addressed the underlying molecular mechanisms. To evaluate plant responses to fluctuating environments using laboratory equipment, we developed SmartGC, a high-performance growth chamber that reproduces the fluctuating irradiance, temperature and humidity of field environments. We analysed massive transcriptome data of rice plants grown under field and SmartGC conditions to clarify the differences in plant responses to field and controlled environments. Rice transcriptome dynamics in SmartGC mimicked those in the field, particularly during the morning and evening but those in conventional growth chamber conditions did not. Further analysis revealed that fluctuation of irradiance affects transcriptome dynamics in the morning and evening, while fluctuation of temperature affects transcriptome dynamics only in the morning. We found upregulation of genes related to biotic and abiotic stress, and their expression was affected by environmental factors that cannot be mimicked by SmartGC. Our results reveal fillable and unfillable gaps in the transcriptomes of rice grown in field and controlled environments and can accelerate the understanding of plant responses to field environments for both basic biology and agricultural applications.


Subject(s)
Oryza , Transcriptome , Gene Expression Regulation, Plant , Oryza/metabolism , Plants/genetics , Stress, Physiological/genetics , Temperature , Transcriptome/genetics
12.
PLoS One ; 17(3): e0265994, 2022.
Article in English | MEDLINE | ID: mdl-35349601

ABSTRACT

When used in closed-type plant factories, light-emitting diode (LED) illumination systems have the particular advantages of low heat emission and high luminous efficiency. The effects of illumination quality and intensity on the growth and morphogenesis of many plant species have been examined, but improvements are needed to optimize the illumination systems for better plant products with lower resource investments. In particular, new strategies are needed to reduce the wastage of plant products related to leaf senescence, and to better control the ingredients and appearance of leafy vegetables. Although the quality of light is often altered to change the characteristics of plant products, the transcriptional status underlying the physiological responses of plants to light has not been established. Herein, we performed a comprehensive gene expression analysis using RNA-sequencing to determine how red, blue, and red/blue LEDs and fluorescent light sources affect transcriptome involved in the leaf aging of leaf lettuce. The RNA-sequencing profiling revealed clear differences in the transcriptome between young and old leaves. Red LED light caused large variation between the two age classes, while a pure or mixed blue LED light spectrum induced fewer transcriptome differences between young and old leaves. Collectively, the expression levels of genes that showed homology with those of other model organisms provide a detailed physiological overview, incorporating such characteristics as the senescence, nutrient deficiency, and anthocyanin synthesis of the leaf lettuce plants. Our findings suggest that transcriptome profiles of leaf lettuce grown under different light sources provide helpful information to achieve better growth conditions for marketable and efficient green-vegetable production, with improved wastage control and efficient nutrient inputs.


Subject(s)
Lactuca , Transcriptome , Nutrients , Photosynthesis , Plant Leaves/genetics , Plant Leaves/metabolism , RNA/metabolism
13.
Bio Protoc ; 11(17): e4136, 2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34604443

ABSTRACT

Recent popularization of next-generation sequencing enables conducting easy transcriptome analysis. Nevertheless, substantial RNA isolation work prior to RNA sequencing, as well as the high cost involved, still makes the routine use of large-scale transcriptome analysis difficult. For example, conventional phenol-chloroform RNA extraction cannot be easily applied to hundreds of samples. Therefore, we developed Direct-TRI, a new cost-effective and high throughput RNA-extraction method that uses a commercial guanidine-phenol-based RNA extraction reagent and a 96-well silica column plate. We applied Direct-TRI to zebrafish whole larvae and juvenile samples and obtained comparable RNA qualities by several different homogenization methods such as vortexing, manual homogenizing, and freezing/crushing. Direct-TRI enabled the extraction of 192 RNA samples in an hour with a cost of less than a dollar per sample. Direct-TRI is useful for large-scale transcriptome studies, manipulating hundreds of zebrafish individuals, and may be used with other animal samples.

14.
Plant Cell Physiol ; 62(9): 1436-1445, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34131748

ABSTRACT

How genetic variations affect gene expression dynamics of field-grown plants remains unclear. Expression quantitative trait loci (eQTL) analysis is frequently used to find genomic regions underlying gene expression polymorphisms. This approach requires transcriptome data for the complete set of the QTL mapping population under the given conditions. Therefore, only a limited range of environmental conditions is covered by a conventional eQTL analysis. We sampled sparse time series of field-grown rice from chromosome segment substitution lines (CSSLs) and conducted RNA sequencing (RNA-Seq). Then, by using statistical analysis integrating meteorological data and the RNA-Seq data, we identified 1,675 eQTLs leading to polymorphisms in expression dynamics under field conditions. A genomic region on chromosome 11 influences the expression of several defense-related genes in a time-of-day- and scaled-age-dependent manner. This includes the eQTLs that possibly influence the time-of-day- and scaled-age-dependent differences in the innate immunity between Koshihikari and Takanari. Based on the eQTL and meteorological data, we successfully predicted gene expression under environments different from training environments and in rice cultivars with more complex genotypes than the CSSLs. Our novel approach of eQTL identification facilitated the understanding of the genetic architecture of expression dynamics under field conditions, which is difficult to assess by conventional eQTL studies. The prediction of expression based on eQTLs and environmental information could contribute to the understanding of plant traits under diverse field conditions.


Subject(s)
Genome, Plant , Oryza/genetics , Transcriptome , Genomics , Oryza/metabolism
15.
Sci Rep ; 11(1): 6242, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737538

ABSTRACT

γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system, exerts its effect through the activation of GABA receptors. GABAA receptors are ligand-gated chloride channels composed of five subunit proteins. Mammals have 19 different GABAA receptor subunits (α1-6, ß1-3, γ1-3, δ, ε, π, θ, and ρ1-3), the physiological properties of which have been assayed by electrophysiology. However, the evolutionary conservation of the physiological characteristics of diverged GABAA receptor subunits remains unclear. Zebrafish have 23 subunits (α1, α2a, α2b, α3-5, α6a, α6b, ß1-4, γ1-3, δ, π, ζ, ρ1, ρ2a, ρ2b, ρ3a, and ρ3b), but the electrophysiological properties of these subunits have not been explored. In this study, we cloned the coding sequences for zebrafish GABAA receptor subunits and investigated their expression patterns in larval zebrafish by whole-mount in situ hybridization. We also performed electrophysiological recordings of GABA-evoked currents from Xenopus oocytes injected with one or multiple zebrafish GABAA receptor subunit cRNAs and calculated the half-maximal effective concentrations (EC50s) for each. Our results revealed the spatial expressions and electrophysiological GABA sensitivities of zebrafish GABAA receptors, suggesting that the properties of GABAA receptor subunits are conserved among vertebrates.


Subject(s)
Larva/metabolism , Protein Subunits/metabolism , Receptors, GABA-A/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Cloning, Molecular , Conserved Sequence , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , In Situ Hybridization, Fluorescence , Kinetics , Larva/genetics , Membrane Potentials/drug effects , Membrane Potentials/physiology , Oocytes/cytology , Oocytes/drug effects , Oocytes/metabolism , Phylogeny , Protein Subunits/genetics , Receptors, GABA-A/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Xenopus , Zebrafish/classification , Zebrafish/genetics , Zebrafish Proteins/genetics , gamma-Aminobutyric Acid/metabolism , gamma-Aminobutyric Acid/pharmacology
16.
Front Bioinform ; 1: 777299, 2021.
Article in English | MEDLINE | ID: mdl-36303726

ABSTRACT

Gene regulatory network (GRN) inference is an effective approach to understand the molecular mechanisms underlying biological events. Generally, GRN inference mainly targets intracellular regulatory relationships such as transcription factors and their associated targets. In multicellular organisms, there are both intracellular and intercellular regulatory mechanisms. Thus, we hypothesize that GRNs inferred from time-course individual (whole embryo) RNA-Seq during development can reveal intercellular regulatory relationships (signaling pathways) underlying the development. Here, we conducted time-course bulk RNA-Seq of individual mouse embryos during early development, followed by pseudo-time analysis and GRN inference. The results demonstrated that GRN inference from RNA-Seq with pseudo-time can be applied for individual bulk RNA-Seq similar to scRNA-Seq. Validation using an experimental-source-based database showed that our approach could significantly infer GRN for all transcription factors in the database. Furthermore, the inferred ligand-related and receptor-related downstream genes were significantly overlapped. Thus, the inferred GRN based on whole organism could include intercellular regulatory relationships, which cannot be inferred from scRNA-Seq based only on gene expression data. Overall, inferring GRN from time-course bulk RNA-Seq is an effective approach to understand the regulatory relationships underlying biological events in multicellular organisms.

17.
Dev Growth Differ ; 62(9): 527-539, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33080046

ABSTRACT

Planarians belong to the phylum Platyhelminthes and can regenerate their missing body parts after injury via activation of somatic pluripotent stem cells called neoblasts. Previous studies suggested that fibroblast growth factor (FGF) signaling plays a crucial role in the regulation of head tissue differentiation during planarian regeneration. To date, however, no FGF homologues in the Platyhelminthes have been reported. Here, we used a planarian Dugesia japonica model and identified an fgf gene termed Djfgf, which encodes a putative secreted protein with a core FGF domain characteristic of the FGF8/17/18 subfamily in bilaterians. Using Xenopus embryos, we found that DjFGF has FGF activity as assayed by Xbra induction. We next examined Djfgf expression in non-regenerating intact and regenerating planarians. In intact planarians, Djfgf was expressed in the auricles in the head and the pharynx. In the early process of regeneration, Djfgf was transiently expressed in a subset of differentiated cells around wounds. Notably, Djfgf expression was highly induced in the process of head regeneration when compared to that in the tail regeneration. Furthermore, assays of head regeneration from tail fragments revealed that combinatorial actions of the anterior extracellular signal-regulated kinase (ERK) and posterior Wnt/ß-catenin signaling restricted Djfgf expression to a certain anterior body part. This is the region where neoblasts undergo active proliferation to give rise to their differentiating progeny in response to wounding. The data suggest the possibility that DjFGF may act as an anterior counterpart of posteriorly localized Wnt molecules and trigger neoblast responses involved in planarian head regeneration.


Subject(s)
Fibroblast Growth Factors/genetics , Animals , Fibroblast Growth Factors/metabolism , Phylogeny , Planarians/genetics
18.
Sci Rep ; 10(1): 13213, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32764610

ABSTRACT

DNA-directed RNA polymerase II (pol II) is composed of ten core and two dissociable subunits. The dissociable subcomplex is a heterodimer of Rpb4/Polr2d and Rpb7/Polr2g, which are encoded by RPB4/polr2d and RPB7/polr2g genes, respectively. Functional studies of Rpb4/Polr2d in yeast have revealed that Rpb4 plays a role primarily in pol II-mediated RNA synthesis and partly in various mRNA regulations including pre-mRNA splicing, nuclear export of mRNAs and decay of mRNAs. Although Rpb4 is evolutionally highly conserved from yeast to human, it is dispensable for survival in budding yeast S. cerevisiae, whereas it was indispensable for survival in fission yeast S. pombe, slime molds and fruit fly. To elucidate whether Rpb4/Polr2d is necessary for development and survival of vertebrate animals, we generated polr2d-deficient zebrafish. The polr2d mutant embryos exhibited progressive delay of somitogenesis at the onset of 11 h postfertilization (hpf). Mutant embryos then showed increased cell death at 15 hpf, displayed hypoplasia such as small eye and cardiac edema by 48 hpf and prematurely died by 60 hpf. In accordance with these developmental defects, our RT-qPCR revealed that expression of housekeeping and zygotic genes was diminished in mutants. Collectively, we conclude that Rpb4/Polr2d is indispensable for vertebrate development.


Subject(s)
RNA Polymerase II/physiology , Zebrafish/embryology , Amino Acid Sequence , Animals , Cell Death , Embryonic Development/physiology , Humans , Mutation , Protein Subunits/genetics , Protein Subunits/physiology , RNA Polymerase II/genetics , RNA, Messenger/metabolism , Sequence Alignment , Zebrafish/genetics
19.
Dev Growth Differ ; 62(6): 407-422, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32621324

ABSTRACT

Planarians have a remarkable regenerative ability owing to their adult pluripotent stem cells (aPSCs), which are called "neoblasts." Planarians maintain a considerable number of neoblasts throughout their adulthood to supply differentiated cells for the maintenance of tissue homeostasis and asexual reproduction (fission followed by regeneration). Thus, planarians serve as a good model to study the regulatory mechanisms of in vivo aPSCs. In asexually reproducing invertebrates, such as sponge, Hydra, and planaria, piwi family genes are the markers most commonly expressed in aPSCs. While piwi family genes are known as guardians against transposable elements in the germline cells of animals that only sexually propagate, their functions in the aPSC system have remained elusive. In this review, we introduce recent knowledge on the PIWI family proteins in the aPSC system in planarians and other organisms and discuss how PIWI family proteins contribute to the regulation of the aPSC system.


Subject(s)
Argonaute Proteins/metabolism , Planarians/metabolism , Pluripotent Stem Cells/metabolism , Reproduction, Asexual , Animals , Argonaute Proteins/genetics , Planarians/genetics , Pluripotent Stem Cells/cytology , Reproduction, Asexual/genetics
20.
Bio Protoc ; 10(12): e3496, 2020 Jun 20.
Article in English | MEDLINE | ID: mdl-33659317

ABSTRACT

RNA-Seq is a powerful method for transcriptome analysis used in varied field of biology. Although several commercial products and hand-made protocols enable us to prepare RNA-Seq library from total RNA, their cost are still expensive. Here, we established a low-cost and multiplexable whole mRNA-Seq library preparation method for illumine sequencers. In order to reduce cost, we used cost-effective and robust commercial regents with small reaction volumes. This method is a whole mRNA-Seq, which can be applied even to non-model organisms lacking the transcriptome references. In addition, we designed large number of 3' PCR primer including 8 nucleotides barcode sequences for multiplexing up to three hundreds samples. To summarize, it is possible with this protocol to prepare 96 directional RNA-Seq libraries from purified total RNA in three days and can be pooled for up to three hundred libraries. This is beneficial for large scale transcriptome analysis in many fields of animals and plant biology.

SELECTION OF CITATIONS
SEARCH DETAIL
...