Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Physiol ; 50(3): 439-46, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19131358

ABSTRACT

To identify key proteins in the regulation of salt tolerance in the mangrove plant Bruguiera gymnorhiza, proteome analysis of samples grown under conditions of salt stress was performed. Comparative two-dimensional electrophoresis revealed that two, three and one protein were differentially expressed in the main root, lateral root and leaf, respectively, in response to salt stress. Among these, three proteins were identified by internal peptide sequence analysis: fructose-1,6-bisphosphate (FBP) aldolase and a novel protein in the main root, and osmotin in the lateral root. These results suggest that FBP aldolase and osmotin play roles in salt tolerance mechanisms common to both glycophytes and mangrove plants. Osmotin was abundant at early time points following salt treatment and seems to play a role in initial osmotic adaptation in lateral roots of B. gymnorhiza under salt stress, but does not contribute towards adaptation to prolonged or continuous exposure to salt stress. The amounts of these proteins were not correlated with those of the respective mRNAs, as determined by microarray analysis. A novel salt-responsive protein, not previously detected by expressed sequence tag analysis or transcriptome analysis, was also identified in this proteomic approach, and may provide insight into the salt tolerance mechanism of the mangrove plant. This is the first report of proteome analysis with detailed analysis of main and lateral roots of mangrove plants under salt stress conditions.


Subject(s)
Plant Proteins/metabolism , Proteome/metabolism , Rhizophoraceae/metabolism , Salt-Tolerant Plants/metabolism , Electrophoresis, Gel, Two-Dimensional , Fructose-Bisphosphate Aldolase/genetics , Fructose-Bisphosphate Aldolase/metabolism , Gene Expression Regulation, Plant , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/metabolism , Proteome/genetics , Proteomics , RNA, Messenger/metabolism , RNA, Plant/metabolism , Rhizophoraceae/genetics , Salt-Tolerant Plants/genetics , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...