Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 23(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35163256

ABSTRACT

Atherosclerosis is the cause of the development of serious cardiovascular disorders, leading to disability and death. Numerous processes are involved in the pathogenesis of atherosclerosis, including inflammation, endothelial dysfunction, oxidative stress, and lipid metabolism disorders. Reverse transport of cholesterol is a mechanism presumably underlying the atheroprotective effect of high-density lipoprotein. In this review, we examined disorders of cholesterol metabolism and their possible effect on atherogenesis. We paid special attention to the reverse transport of cholesterol. Transformed cholesterol metabolism results in dyslipidemia and early atherosclerosis. Reverse cholesterol transport is an endogenous mechanism by which cells export cholesterol and maintain homeostasis. It is known that one of the main factors leading to the formation of atherosclerotic plaques on the walls of blood vessels are multiple modifications of low-density lipoprotein, and the formation of foam cells following them.


Subject(s)
Atherosclerosis/metabolism , Biological Transport/physiology , Cholesterol/metabolism , Animals , Humans , Plaque, Atherosclerotic/metabolism
2.
Biology (Basel) ; 9(8)2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32708035

ABSTRACT

Desialylation-loss of terminal sialic acid residues from glycoconjugates catalyzed by sialidases-is involved in many human diseases and is considered a key molecular event of atherosclerosis onset. Desialylated low-density lipoproteins with atherogenic properties have been detected in human blood previously. However, there is currently no consensus on the origin of desialylation activity in the bloodstream. Here, we suggest viral intervention as a possible explanation. In order to address our hypothesis, we studied seasonal patterns of blood serum sialidase enzymatic activity and designed an approach to detect and quantify viral sialidase genetic presence. Increased sialidase activity in autumn-winter combined with detectable levels of influenza virus sialidase mRNA suggests exogenous viral sialidase as a viable component of desialylation in human blood, providing new insights on the molecular background of atherogenesis.

3.
Biology (Basel) ; 9(4)2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32331341

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a multifactorial disease, in which systemic inflammation plays a key role. This 6-month randomized double-blinded placebo-controlled study evaluates the possible effect of natural preparation Inflaminat on clinical symptoms of COPD, indicators of respiratory function, and exacerbation frequency in 60 patients with moderate severity of COPD. Inflaminat is a combination of natural ingredients black elder (Sambucus nigra L.) berries, violet (Viola tricolor L.) herb, and calendula (Calendula officinalis L.) flowers. The preparation has been previously demonstrated to possess anticytokine and anti-inflammatory effects in experimental studies. In present study, COPD dynamics were evaluated by means of BCSS (Breathlessness, Cough, and Sputum Scale) and spirometry tests. It was shown that 6-months Inflaminat administration led to significant decrease of BCSS points from 3.0 ± 0.6 to 1.9 ± 0.7, (p = 0.002) as well as significant increase of FEV1 from 66 ± 18% to 73 ± 17%, (p = 0.042); there were no beneficial dynamics in placebo group. Side effects associated with preparation administration were not identified. The results of the study suggest that Inflaminat may be employed in treatment of patients with moderate severity of COPD, since it has a positive effect on COPD symptoms according BCSS and indicators of respiratory function FEV1.

4.
Front Pharmacol ; 11: 613780, 2020.
Article in English | MEDLINE | ID: mdl-33510639

ABSTRACT

Cardiovascular pathologies maintain the leading position in mortality worldwide. Atherosclerosis is a chronic disease that can result in a variety of serious complications, such as myocardial infarction, stroke, and cardiovascular disease. Inflammation and lipid metabolism alterations play a crucial role in atherogenesis, but the details of relationships and causality of these fundamental processes remain not clear. The oxidation of LDL was considered the main atherogenic modification of LDL within the vascular wall for decades. However, recent investigations provided a growing body of evidence in support of the multiple LDL modification theory. It suggests that LDL particles undergo numerous modifications that change their size, density, and chemical properties within the blood flow and vascular wall. Oxidation is the last stage in this cascade resulting in the atherogenic properties. Moreover, recent investigations have discovered that oxLDL may have both anti-inflammatory and pro-inflammatory properties. Oxidized LDL can trigger inflammation through the activation of macrophages and other cells. After all, oxidized LDL is still a promising object for further investigations that have the potential to clarify the unknown parts of the atherogenic process. In this review, we discuss the role of oxLDL in atherosclerosis development on different levels.

5.
J Clin Med ; 8(11)2019 Oct 27.
Article in English | MEDLINE | ID: mdl-31717832

ABSTRACT

Inflammation plays a key role in the initiation and progression of atherosclerosis and can be caused by multiple agents, including increased concentration of circulating low-density lipoprotein (LDL) cholesterol. Areas of the arterial wall affected by atherosclerosis are enriched with lymphocytes and dendritic cells (DCs). Atherosclerotic plaques contain a variety of proinflammatory immune cells, such as macrophages, DCs, T cells, natural killer cells, neutrophils and others. Intracellular lipid accumulation in atherosclerotic plaque leads to formation of so-called foam cells, the cytoplasm of which is filled with lipid droplets. According to current understanding, these cells can also derive from the immune cells that engulf lipids by means of phagocytosis. Macrophages play a crucial role in the initial stages of atherogenesis by engulfing oxidized LDL (oxLDL) in the intima that leads to their transformation to foam cells. Dying macrophages inside the plaque form a necrotic core that further aggravates the lesion. Proinflammatory DCs prime differentiation of naïve T cells to proinflammatory Th1 and Th17 subsets. In this review, we discuss the roles of cell types of myeloid origin in atherosclerosis-associated inflammation.

SELECTION OF CITATIONS
SEARCH DETAIL