Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Anal Sci ; 39(10): 1771-1775, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37378820

ABSTRACT

Nitroxyl radical compounds oxidize hydroxy groups and some amino groups upon application of an electric potential. The resulting anodic current depends on the concentration of these functional groups in solution. Thus, it is possible to quantify compounds containing these functional groups by electrochemical methods. Cyclic voltammetry has been used to evaluate the catalytic activity of nitroxyl radicals, and the ability of such radicals to sense biological and other compounds. In this study, we evaluated a method for quantifying compounds using constant-potential electrolysis (amperometry) of nitroxyl radicals for application in flow injection analysis and high-performance liquid chromatography as an electrochemical detector. When amperometry was performed using 2,2,6,6-tetramethylpiperidine 1-oxyl, a common nitroxyl radical compound, little change was observed even with 100 mM glucose due to its low reactivity in neutral aqueous solutions. In contrast, 2-azaadamantane N-oxyl and nortropine N-oxyl, which are highly active nitroxyl radicals, showed a concentration-dependent response in neutral aqueous solution. Responses of 33.8 and 125.9 µA, respectively, were observed. By recognition of hydroxy and amino groups, we have succeeded in the electrochemical detection of some drugs by amperometry. Streptomycin, an aminoglycoside antibiotic, was quantifiable in the range of 30-1000 µM.


Subject(s)
Anti-Bacterial Agents , Nitrogen Oxides , Chromatography, High Pressure Liquid/methods , Nitrogen Oxides/chemistry , Cyclic N-Oxides/chemistry
2.
J Org Chem ; 88(3): 1434-1444, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36655914

ABSTRACT

8-Azabicyclo[3.2.1]octan-8-ol (ABOOL) and 7-azabicyclo[2.2.1]heptan-7-ol (ABHOL) are the main homologues of hydroxylamine 2-azaadamantan-2-ol (AZADOL) and 9-azabicyclo[3.3.1]nonan-9-ol. Both homologues feature a small bicyclic backbone and are known to be stable; however, to date, they have not been used as catalysts for alcohol oxidation. Herein, we report that these hydroxylamines can efficiently catalyze the oxidation of various secondary alcohols to their corresponding ketones using molecular oxygen in ambient air as the terminal oxidant and copper cocatalysts at room temperature. Furthermore, we show that ABOOL and ABHOL can be easily synthesized from commercially available materials.

3.
Anal Sci ; 39(3): 369-374, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36576651

ABSTRACT

Nitroxyl radicals are known to electrochemically oxidize thiols as well as alcohols and amines. In this study, a preliminary investigation of the electrochemical reaction of thiols with 9-azabicyclo[3.3.1]nonane N-oxyl (ABNO), 2-azaadamantane N-oxyl (AZADO), and nortropine N-oxyl (NNO), which are highly active due to their bicyclo structures, for use in electrochemical analysis was performed and the results were compared with those for a typical nitroxyl radical compound, 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO). Mercaptopropane sulfonic acid (MPS) was used as a model compound to investigate the electrochemical response in aqueous solution. In addition, electrochemical detection of glutathione, a biological thiol molecule, was performed.

4.
Polymers (Basel) ; 14(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36559714

ABSTRACT

We previously reported that layer-by-layer (LbL) film prepared by a combination of 2,2,6,6-tetramethylpiperidinyl N-oxyl (TEMPO)-modified polyacrylic acid (PAA) and polyethyleneimine (PEI) were decomposed by application of an electric potential. However, there have been no reports yet for other polycationic species. In this study, LbL films were prepared by combining various polycationics (PEI, poly(allylamine hydrochloride) (PAH), poly(diallydimethylammonium chloride) (PDDA), and polyamidoamine (PAMAM) dendrimer) and TEMPO-PAA, and the decomposition of the thin films was evaluated using cyclic voltammetry (CV) and constant potential using an electrochemical quartz crystal microbalance (eQCM). When a potential was applied to an electrode coated on an LbL thin film of polycations and TEMPO-PAA, an oxidation potential peak (Epa) was obtained around +0.6 V vs. Ag/AgCl in CV measurements. EQCM measurements showed the decomposition of the LbL films at voltages near the Epa of the TEMPO residues. Decomposition rate was 82% for the (PEI/TEMPO-PAA)5 film, 52% for the (PAH/TEMPO-PAA)5 film, and 49% for the (PDDA/TEMPO-PAA)5 film. It is considered that the oxoammonium ion has a positive charge, and the LbL films were decomposed due to electrostatic repulsion with the polycations (PEI, PAH, and PDDA). These LbL films may lead to applications in drug release by electrical stimulation. On the other hand, the CV of the (PAMAM/TEMPO-PAA)5 film did not decompose. It is possible that the decomposition of the thin film is not promoted, probably because the amount of TEMPO-PAA absorbed is small.

5.
Chem Pharm Bull (Tokyo) ; 69(10): 1005-1009, 2021.
Article in English | MEDLINE | ID: mdl-34602569

ABSTRACT

Nitroxyl radicals, such as 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO), can catalyze the electrochemical oxidation of alcohols and amines. Because the oxidation current obtained in this process depends on the concentration of alcohols and amines, this process can be applied to their sensing. However, the relatively high oxidation potentials required by nitroxyl radicals can induce interfering oxidation currents from various reductive substances in biological samples, which affects the accuracy of analyte measurements. In this study, we examined the electrooxidation of alcohols and amines at a low potential by applying cooperative oxidation catalysis using a nitroxyl radical and a copper salt. Nortropine N-oxyl (NNO), which showed higher catalytic activity than TEMPO was used as the nitroxyl radical. An increase in the oxidation current was observed at the low potential, and this increase depended on the alcohol concentration. In the case of the electrooxidation of amines, a positive correlation between oxidation current and amine concentration was observed at low amine concentrations. Therefore, low-potential cooperative catalysis can be applied to alcohol and amine electrooxidation for the development of accurate sensors suitable for clinical settings.


Subject(s)
Alcohols/chemistry , Amines/chemistry , Copper/chemistry , Nitrogen Oxides/chemistry , Catalysis , Electrons , Free Radicals/chemistry , Molecular Structure , Oxidation-Reduction
6.
Dalton Trans ; 50(22): 7633-7639, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-33973617

ABSTRACT

The redox properties of metallo-base pairs remain to be elucidated. Herein, we report the detailed 1H/13C/109Ag NMR spectroscopic and cyclic voltammetric characterisation of the [Ag(cytidine)2]+ complex as isolated cytosine-Ag+-cytosine (C-Ag+-C) base pairs. We also performed comparative studies between cytidine/Ag+ and other nucleoside/Ag+ systems by using cyclic voltammetry measurements. In addition, to evaluate the effect of [Ag(cytidine)2]+ formation on the chemical reduction of Ag+ to Ag, we utilised the redox reaction between Ag+ and tetrathiafulvalene (TTF). We found that Ag+-mediated base pairing lowers the redox potential of the Ag+/Ag couple. In addition, C-Ag+-C base pairing makes it more difficult to reduce captured Ag+ ions than in other nucleoside/Ag+ systems. Remarkably, the cytidine/Ag+ system can be utilised to control the redox potential of the Ag+/Ag couple in DMSO. This feature of the cytidine/Ag+ system may be exploited for Ag nanoparticle synthesis by using the redox reaction between Ag+ and TTF.

7.
Dalton Trans ; 50(35): 12208-12214, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-35226008

ABSTRACT

Ag+-mediated base pairing is valuable for synthesising DNA-based silver nanoparticles (AgNPs) and nanoclusters (AgNCs). Recently, we reported the formation of a [Ag(cytidine)2]+ complex in dimethyl sulfoxide (DMSO), which facilitated the evaluation of the effect of cytosine-Ag+-cytosine (C-Ag+-C) base pairing on the degree of AgNP aggregation in solution. As an aprotic solvent, DMSO was expected to dissolve the [Ag(cytidine)2]+ complex, and powerful reducing agents, such as organic electron donors. In this study, the chemical reduction of a cytidine/Ag+ system using a powerful reducing agent tetrakis(dimethylamino)ethylene (TDAE) was investigated. 1H/13C/15N NMR spectroscopic evidence was obtained to identify the iminium dication (TDAE2+), which is an oxidised form of TDAE. The results were compared with those obtained using another organic electron donor, tetrathiafulvalene (TTF), which exhibits a relatively lower reduction activity than TDAE. AgNPs prepared via redox reaction between [Ag(cytidine)2]+ and organic electron donors (TDAE and TTF) were characterised using UV-Vis spectroscopy and nanoparticle tracking analysis. It was found that the formation of C-Ag+-C base pairing inhibited the aggregation of AgNPs in solution. In addition, in the presence of cytidine, the total concentration of the AgNP solution was affected by the reduction activity of the reducing agent.

8.
RSC Adv ; 11(35): 21622-21628, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-35478798

ABSTRACT

Quantifying drug concentrations in vivo quickly and easily is possible using electrochemical methods. The present study describes the electrochemical detection of vancomycin (VCM) and other antibiotics from the current obtained using nitroxyl radicals as electrocatalysts. Nortropine N-oxyl (NNO), which is more active than 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), a typical nitroxyl radical compound, produced greater current values for drugs with intramolecular hydroxy groups and secondary and tertiary amines. However, because the catalytic action of NNO is inactivated by primary amines in the substrate, VCM and teicoplanin with primary amines could not be detected. TEMPO was less active than NNO but not inactivated against primary amines. Therefore, electrochemical sensing of vancomycin was done using 4-acetamido-2,2,6,6-tetramethylpiperidine 1-oxyl (A-TEMPO), which has a greater oxidation capacity than TEMPO due to its electron-withdrawing groups. As a result, the current of A-TEMPO increased in the low concentration range of VCM as compared to TEMPO. This method also was able to quantify VCM in the concentration range of 10-100 µM, which is an important concentration range for drug monitoring in blood.

9.
Anal Sci ; 37(6): 893-896, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-33132234

ABSTRACT

A modified electrode was developed by immobilizing poly(azure A) (pAA) onto the surface of a glassy carbon electrode via the electropolymerization of azure A (AA). The pAA immobilized on the electrode exhibited redox response during cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The redox reaction obeyed the Nernst equation because of the involvement of H+ ions. In addition, the peak potential was shifted according to the solution pH. The shifts of the oxidation peak potential could be more easily observed using DPV than when using CV, indicating that the developed electrode could be useful as a pH sensor. This pH measurement method can be successfully applied in the pH range of 1 to 10 and can be successfully repeated more than 50 times.

10.
Polymers (Basel) ; 12(10)2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33053708

ABSTRACT

pH is one of the most important properties associated with an aqueous solution and various pH measurement techniques are available. In this study, Azure A-modified poly(methacrylic acid) (AA-PMA) was synthesized used to prepare a layer-by-layer deposited film with poly(allylamine hydrochloride) (PAH) on a glassy carbon electrode via electrostatic interactions and the multilayer film-immobilized electrode was used to measure pH. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurement were performed. Consequently, the oxidation potential of AA on the electrode changed with pH. As per Nernst's equation, because H+ ions are involved in the redox reaction, the peak potential shifted depending on the pH of the solution. The peak potential shifts are easier to detect by DPV than CV measurement. Accordingly, using electrochemical responses, the pH was successfully measured in the pH range of 3 to 9, and the electrodes were usable for 50 repeated measurements. Moreover, these electrochemical responses were not affected by interfering substances.

11.
Polymers (Basel) ; 12(8)2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32824825

ABSTRACT

Phenylboronic acid-bearing polyamidoamine dendrimer (PBA-PAMAM)/poly(vinyl alcohol) (PVA) multilayer films were prepared through the layer-by-layer (LbL) deposition of PBA-PAMAM solution and PVA solution. PBA-PAMAM/PVA films were constructed successfully through the formation of boronate ester bonds between the boronic acid moiety in PBA and 1,3-diol units in PVA. When the (PBA-PAMAM/PVA)5 films were immersed in rose bengal (RB) solution, RB was adsorbed onto the LbL films. The amount of RB adsorbed was higher in the LbL films immersed in acidic solution than in basic solution. The release of RB from the LbL films was also promoted in the basic solution, while it was suppressed in the acidic solution. The boronic acid ester is oxidized to phenol by hydrogen peroxide (H2O2) and the carbon-boron bond is cleaved, so that the (PBA-PAMAM/PVA)5 films can be decomposed by immersion in H2O2 solution. Therefore, when RB-adsorbed (PBA-PAMAM/PVA)5 films were immersed in H2O2 solution, the release of RB was moderately promoted when the solution was weakly acidic.

12.
Polymers (Basel) ; 12(2)2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32033050

ABSTRACT

Glucose-sensitive films were prepared through the layer-by-layer (LbL) deposition of hemin-modified poly(ethyleneimine) (H-PEI) solution and DNA solution (containing glucose oxidase (GOx)). H-PEI/DNA + GOx multilayer films were constructed using electrostatic interactions. The (H-PEI/DNA + GOx)5 film was then partially decomposed by hydrogen peroxide (H2O2). The mechanism for the decomposition of the LbL film was considered to involve more reactive oxygen species (ROS) that were formed by the reaction of hemin and H2O2, which then caused nonspecific DNA cleavage. In addition, GOx present in the LbL films reacts with glucose to generate hydrogen peroxide. Therefore, decomposition of the (H-PEI/DNA + GOx)5 film was observed when the thin film was immersed in a glucose solution. (H-PEI/DNA + GOx)5 films exposed to a glucose solution for periods of 24, 48 72, and 96 h indicated that the decomposition of the film increased with the time to 9.97%, 16.3%, 23.1%, and 30.5%, respectively. The rate of LbL film decomposition increased with the glucose concentration. At pH and ionic strengths close to physiological conditions, it was possible to slowly decompose the LbL film at low glucose concentrations of 1-10 mM.

13.
Nanomaterials (Basel) ; 8(11)2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30445711

ABSTRACT

H2O2-sensitive nanofilms composed of DNA and hemin-appended poly(ethyleneimine) (H-PEI) were prepared by a layer-by-layer deposition of DNA and H-PEI through an electrostatic interaction. The (H-PEI/DNA)5 film was decomposed by addition of 10 mM H2O2. H2O2-induced decomposition was also confirmed in the hemin-containing (PEI/DNA)5 in which hemin molecules were adsorbed by a noncovalent bond to the nanofilm. On the other hand, the (PEI/DNA)5 film containing no hemin and the (H-PEI/PSS)5 film using PSS instead of DNA did not decompose even with 100 mM H2O2. The mechanism of nanofilm decomposition was thought that more reactive oxygen species (ROS) was formed by reaction of hemin and H2O2 and then the ROS caused DNA cleavage. As a result (H-PEI/DNA)5 and hemin-containing (PEI/DNA)5 films were decomposed. The decomposition rate of these nanofilms were depended on concentration of H2O2, modification ratio of hemin, pH, and ionic strength.

14.
Polymers (Basel) ; 10(8)2018 Jul 24.
Article in English | MEDLINE | ID: mdl-30960737

ABSTRACT

Thin films were prepared using layer-by-layer (LbL) deposition of Nafion (NAF) and polycations such as poly(allylamine hydrochloride) (PAH), poly(ethyleneimine) (PEI), and poly(diallydimethylammonium chloride) (PDDA). Insulin was then adsorbed on the NAF-polycation LbL films by immersion in an insulin solution. The NAF-polycation LbL films were characterized using a quartz crystal microbalance and an atomic force microscope. The release of insulin from the LbL films was characterized using UV-visible adsorption spectroscopy and fluorescence emission spectroscopy. The greatest amount of insulin was adsorbed on the NAF-PAH LbL film. The amount of insulin adsorbed on the (NAF/PAH)5NAF LbL films by immersion in a 1 mg mL-1 insulin solution at pH 7.4 was 61.8 µg cm-2. The amount of insulin released from the LbL films was higher when immersed in insulin solutions at pH 2.0 and pH 9.0 than at pH 7.4. Therefore, NAF-polycations could be employed as insulin delivery LbL films under mild conditions and as an insulin release control system according to pH change.

15.
Polymers (Basel) ; 10(10)2018 Oct 18.
Article in English | MEDLINE | ID: mdl-30961089

ABSTRACT

Hydrogen peroxide (H2O2)-sensitive layer-by-layer films were prepared based on combining phenyl boronic acid (PBA)-modified poly(allylamine) (PAH) with shikimic acid (SA)-modified-PAH through boronate ester bonds. These PBA-PAH/SA-PAH multilayer films could be prepared in aqueous solutions at pH 7.4 and 9.0 in the presence of NaCl. It is believed that the electrostatic repulsion between the SA-PAH and PBA-PAH was diminished and the formation of ester bonds between the SA and PBA was promoted in the presence of NaCl. These films readily decomposed in the presence of H2O2 because the boronate ester bonds were cleaved by an oxidation reaction. In addition, SA-PAH/PBA-PAH multilayer films combined with glucose oxidase (GOx) were decomposed in the presence of glucose because GOx catalyzes the oxidation of D-glucose to generate H2O2. The surfaces of CaCO3 microparticles were coated with PAH/GOx/(SA-PAH/PBA-PAH)5 films that absorbed insulin. A 1 mg quantity of these particles released up to 10 µg insulin in the presence 10 mM glucose under physiological conditions.

16.
Toxicology ; 250(2-3): 96-9, 2008 Sep 04.
Article in English | MEDLINE | ID: mdl-18611425

ABSTRACT

We recently reported that para-nonylphenol, an environmental chemical, induced hydroxyl radical (*OH) formation in rat striatum. In this study we examined the antioxidant effects of angiotensin-converting enzyme inhibitors (captopril or enalaprilat) on para-nonylphenol (nonylphenol) and 1-methyl-4-phenylpyridinium ion (MPP(+))-induced hydroxyl radical (*OH) formation and dopamine (DA) efflux in extracellular fluid of rat striatum, using a microdialysis technique. para-Nonylphenol clearly enhanced *OH formation and DA efflux induced by MPP(+). When captopril or enalaprilat was infused in nonylphenol and MPP(+)-treated rats, DA efflux and OH formation significantly decreased, as compared with that in the nonylphenol and MPP(+)-treated control. We compared the ability of non-SH-containing enalaprilat with a SH-containing captopril to scavenge OH and DA efflux. Both inhibitors were able to scavenge *OH and DA efflux induced by para-nonylphenol and MPP(+). The results suggest that angiotensin-converting enzyme inhibitors may protect against nonylphenol and MPP(+)-induced *OH formation via suppressing DA efflux in the rat striatum.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Captopril/pharmacology , Dopamine/metabolism , Enalaprilat/pharmacology , Hydroxyl Radical/metabolism , Neostriatum/metabolism , Phenols/toxicity , 1-Methyl-4-phenylpyridinium/toxicity , Animals , Catechols/pharmacology , Dopamine Agents/toxicity , Dose-Response Relationship, Drug , Hydroxybenzoates , Iron/pharmacology , Male , Neostriatum/drug effects , Rats , Rats, Wistar
17.
Yakugaku Zasshi ; 127(7): 1047-57, 2007 Jul.
Article in Japanese | MEDLINE | ID: mdl-17603263

ABSTRACT

Thin poly (acrylic acid) (PAA)-coated graphite felt (GF) is a promising electrode material for preparative organic electrosynthesis, because the electrode is not only stable and durable but also can be modified with various mediators and enzymes in the PAA layer. The TEMPO-modified GF electrode for electrocatalytic oxidation of several types of organic compounds were successfully constructed. The modified electrode had many advantageous properties compared with direct electrosynthesis or mediatory reaction synthesis which is still common as an electrochemical system. The use of a chiral nitroxyl radical-modified GF electrode afforded enantioselective oxidation of racemic alcohols or amines (remaining optically pure alcohols or amines) and asymmetric lactonization of methyl-substituted diols. A preparative electrocatalytic radical cyclization of bromo alkyl cyclohexenones was successfully achieved on a nickel (II) tetraazamacrocyclic complex-modified GF electrode. The PAA-coated GF electrode modified with viologen and palladium metal microparticles is effective for the electrocatalytic hydrogenation of olefins. An electrode immobilizing all components of mediator, enzyme, and coenzyme for electroenzymatic reactions was also prepared, and several electroenzymatic reactions were smoothly carried out. Substrate immobilization on GF for the solid-phase acetylene coupling reaction was achieved by electrochemical polymerization of the substrate precursor containing a pyrrole side chain, where the amount of substrate on the electrode surface was easily controlled by the number of repeated cyclic voltammetric scanning. Couplings between terminal acetylenes and the iodobenzene-modified GF electrode or aromatic iodides and the terminal acetylene-modified GF electrode in the presence of palladium catalyst proceeded smoothly with satisfactory yields.


Subject(s)
Chemistry, Organic/methods , Electrochemistry/methods , Electrodes , Organic Chemicals/chemical synthesis , Acrylates , Catalysis , Electrolysis , Graphite , Oxidation-Reduction , Stereoisomerism
18.
Anal Bioanal Chem ; 382(4): 1196-201, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15906009

ABSTRACT

Sinapine (O-sinapoyl choline) is a crucial component, with much medicinal value, of many dietary and medicinal plants. It has been found that sinapine gives an electrochemical response at a pyrolytic graphite electrode. The electrochemical properties of sinapine have been investigated. The peak current in the cyclic voltammogram is linear in the concentration range 1.9 x 10(-6)-2.5 x 10(-4) mol L(-1) and the limit of detection is 9.9 x 10(-7) mol L(-1). These properties can be applied to the determination of sinapine in extracts from three kinds of medicinal plant. The electrochemical method reported here is highly selective, sensitive, and stable.


Subject(s)
Choline/analogs & derivatives , Lepidium/chemistry , Mustard Plant/chemistry , Plants, Medicinal/chemistry , Sinapis/chemistry , Choline/analysis , Electrochemistry , Hydrogen-Ion Concentration , Molecular Structure , Seeds/chemistry , Sensitivity and Specificity
19.
Biophys Chem ; 114(1): 21-6, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15792857

ABSTRACT

Danthron is an important natural occurring component in laxative drugs. In this paper, electrochemical investigation of danthron and its interaction with DNA is reported. Via the electrochemical approach assisted by ultraviolet-visible (UV-Vis) spectroscopy, we have proved that danthron intercalates into DNA strands forming some nonelectroactive complexes, which results in the decrease of redox peak currents of danthron. In addition, the decrease of the peak currents is proportional to the concentration of DNA. The difference between the interaction of danthron with double-stranded DNA (dsDNA) and with single-stranded DNA (ssDNA) has also been studied. This character implies the potential of danthron to discriminate dsDNA and ssDNA.


Subject(s)
Anthraquinones/pharmacology , DNA, Single-Stranded/drug effects , DNA/drug effects , Electrochemistry/methods , Intercalating Agents/pharmacology , Anthraquinones/chemistry , DNA/chemistry , DNA/metabolism , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , Electrodes , Intercalating Agents/chemistry , Spectrophotometry, Ultraviolet/methods
20.
Org Lett ; 6(20): 3629-32, 2004 Sep 30.
Article in English | MEDLINE | ID: mdl-15387565

ABSTRACT

[reaction: see text] Electroreductive tandem cyclization of 4-allyl-4-(2-bromoprop-2-en-1-yl)cyclohex-2-en-1-one to tricyclo[6.2.1.0(1,6)]undecan-4-one has been demonstrated. This protocol represents an attractive alternative to conventional tandem radical cyclization.

SELECTION OF CITATIONS
SEARCH DETAIL
...